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11
Vector Autoregressive Models for
Multivariate Time Series

11.1 Introduction

The vector autoregression (VAR) model is one of the most successful, flexi-
ble, and easy to use models for the analysis of multivariate time series. It is
a natural extension of the univariate autoregressive model to dynamic mul-
tivariate time series. The VAR model has proven to be especially useful for
describing the dynamic behavior of economic and financial time series and
for forecasting. It often provides superior forecasts to those from univari-
ate time series models and elaborate theory-based simultaneous equations
models. Forecasts from VAR models are quite flexible because they can be
made conditional on the potential future paths of specified variables in the
model.
In addition to data description and forecasting, the VAR model is also

used for structural inference and policy analysis. In structural analysis, cer-
tain assumptions about the causal structure of the data under investiga-
tion are imposed, and the resulting causal impacts of unexpected shocks or
innovations to specified variables on the variables in the model are summa-
rized. These causal impacts are usually summarized with impulse response
functions and forecast error variance decompositions.
This chapter focuses on the analysis of covariance stationary multivari-

ate time series using VAR models. The following chapter describes the
analysis of nonstationary multivariate time series using VAR models that
incorporate cointegration relationships.
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This chapter is organized as follows. Section 11.2 describes specification,
estimation and inference in VAR models and introduces the S+FinMetrics
function VAR. Section 11.3 covers forecasting from VAR model. The discus-
sion covers traditional forecasting algorithms as well as simulation-based
forecasting algorithms that can impose certain types of conditioning infor-
mation. Section 11.4 summarizes the types of structural analysis typically
performed using VAR models. These analyses include Granger-causality
tests, the computation of impulse response functions, and forecast error
variance decompositions. Section 11.5 gives an extended example of VAR
modeling. The chapter concludes with a brief discussion of Bayesian VAR
models.
This chapter provides a relatively non-technical survey of VAR models.

VARmodels in economics were made popular by Sims (1980). The definitive
technical reference for VAR models is Lütkepohl (1991), and updated sur-
veys of VAR techniques are given in Watson (1994) and Lütkepohl (1999)
and Waggoner and Zha (1999). Applications of VAR models to financial
data are given in Hamilton (1994), Campbell, Lo and MacKinlay (1997),
Cuthbertson (1996), Mills (1999) and Tsay (2001).

11.2 The Stationary Vector Autoregression Model

LetYt = (y1t, y2t, . . . , ynt)
0 denote an (n×1) vector of time series variables.

The basic p-lag vector autoregressive (VAR(p)) model has the form

Yt= c+Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p + εt, t = 1, . . . , T (11.1)

where Πi are (n×n) coefficient matrices and εt is an (n× 1) unobservable
zero mean white noise vector process (serially uncorrelated or independent)
with time invariant covariance matrix Σ. For example, a bivariate VAR(2)
model equation by equation has the formµ
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or

y1t = c1 + π111y1t−1 + π112y2t−1 + π211y1t−2 + π212y2t−2 + ε1t

y2t = c2 + π121y1t−1 + π122y2t−1 + π221y1t−1 + π222y2t−1 + ε2t

where cov(ε1t, ε2s) = σ12 for t = s; 0 otherwise. Notice that each equation
has the same regressors — lagged values of y1t and y2t. Hence, the VAR(p)
model is just a seemingly unrelated regression (SUR) model with lagged
variables and deterministic terms as common regressors.
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In lag operator notation, the VAR(p) is written as

Π(L)Yt = c+ εt

where Π(L) = In−Π1L− ...−ΠpL
p. The VAR(p) is stable if the roots of

det (In −Π1z − · · ·−Πpz
p) = 0

lie outside the complex unit circle (have modulus greater than one), or,
equivalently, if the eigenvalues of the companion matrix

F =


Π1 Π2 · · · Πn

In 0 · · · 0

0
. . . 0

...
0 0 In 0


have modulus less than one. Assuming that the process has been initialized
in the infinite past, then a stable VAR(p) process is stationary and ergodic
with time invariant means, variances, and autocovariances.
If Yt in (11.1) is covariance stationary, then the unconditional mean is

given by
µ = (In −Π1 − · · ·−Πp)

−1c

The mean-adjusted form of the VAR(p) is then

Yt − µ = Π1(Yt−1 − µ)+Π2(Yt−2 − µ)+ · · ·+Πp(Yt−p − µ) + εt

The basic VAR(p) model may be too restrictive to represent sufficiently
the main characteristics of the data. In particular, other deterministic terms
such as a linear time trend or seasonal dummy variables may be required
to represent the data properly. Additionally, stochastic exogenous variables
may be required as well. The general form of the VAR(p) model with de-
terministic terms and exogenous variables is given by

Yt= Π1Yt−1+Π2Yt−2+ · · ·+ΠpYt−p +ΦDt+GXt + εt (11.4)

where Dt represents an (l × 1) matrix of deterministic components, Xt

represents an (m × 1) matrix of exogenous variables, and Φ and G are
parameter matrices.

Example 64 Simulating a stationary VAR(1) model using S-PLUS

A stationary VAR model may be easily simulated in S-PLUS using the
S+FinMetrics function simulate.VAR. The commands to simulate T =
250 observations from a bivariate VAR(1) model

y1t = −0.7 + 0.7y1t−1 + 0.2y2t−1 + ε1t

y2t = 1.3 + 0.2y1t−1 + 0.7y2t−1 + ε2t
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with

Π1 =

µ
0.7 0.2
0.2 0.7

¶
, c =

µ −0.7
1.3

¶
, µ =

µ
1
5

¶
, Σ =

µ
1 0.5
0.5 1

¶
and normally distributed errors are

> pi1 = matrix(c(0.7,0.2,0.2,0.7),2,2)

> mu.vec = c(1,5)

> c.vec = as.vector((diag(2)-pi1)%*%mu.vec)

> cov.mat = matrix(c(1,0.5,0.5,1),2,2)

> var1.mod = list(const=c.vec,ar=pi1,Sigma=cov.mat)

> set.seed(301)

> y.var = simulate.VAR(var1.mod,n=250,

+ y0=t(as.matrix(mu.vec)))

> dimnames(y.var) = list(NULL,c("y1","y2"))

The simulated data are shown in Figure 11.1. The VAR is stationary since
the eigenvalues of Π1 are less than one:

> eigen(pi1,only.values=T)

$values:

[1] 0.9 0.5

$vectors:

NULL

Notice that the intercept values are quite different from the mean values of
y1 and y2:

> c.vec

[1] -0.7 1.3

> colMeans(y.var)

y1 y2

0.8037 4.751

11.2.1 Estimation

Consider the basic VAR(p) model (11.1). Assume that the VAR(p) model
is covariance stationary, and there are no restrictions on the parameters of
the model. In SUR notation, each equation in the VAR(p) may be written
as

yi = Zπi + ei, i = 1, . . . , n

where yi is a (T × 1) vector of observations on the ith equation, Z is
a (T × k) matrix with tth row given by Z0t = (1,Y0

t−1, . . . ,Y0
t−p), k =

np+ 1, πi is a (k × 1) vector of parameters and ei is a (T × 1) error with
covariance matrix σ2i IT . Since the VAR(p) is in the form of a SUR model
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FIGURE 11.1. Simulated stationary VAR(1) model.

where each equation has the same explanatory variables, each equation may
be estimated separately by ordinary least squares without losing efficiency
relative to generalized least squares. Let Π̂ = [π̂1, . . . , π̂n] denote the (k×n)
matrix of least squares coefficients for the n equations.
Let vec(Π̂) denote the operator that stacks the columns of the (n × k)

matrix Π̂ into a long (nk × 1) vector. That is,

vec(Π̂) =

 π̂1
...
π̂n


Under standard assumptions regarding the behavior of stationary and er-
godic VAR models (see Hamilton (1994) or Lütkepohl (1991)) vec(Π̂) is
consistent and asymptotically normally distributed with asymptotic covari-
ance matrix

[avar(vec(Π̂)) = Σ̂⊗ (Z0Z)−1

where

Σ̂ =
1

T − k

TX
t=1

ε̂tε̂
0
t

and ε̂t = Yt−Π̂0Zt is the multivariate least squares residual from (11.1) at
time t.
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11.2.2 Inference on Coefficients

The ith element of vec(Π̂), π̂i, is asymptotically normally distributed with

standard error given by the square root of ith diagonal element of Σ̂⊗ (Z0Z)−1.
Hence, asymptotically valid t-tests on individual coefficients may be con-
structed in the usual way. More general linear hypotheses of the form
R·vec(Π) = r involving coefficients across different equations of the VAR
may be tested using the Wald statistic

Wald = (R·vec(Π̂)−r)0
n
R
h
[avar(vec(Π̂))

i
R0
o−1

(R·vec(Π̂)−r) (11.5)

Under the null, (11.5) has a limiting χ2(q) distribution where q = rank(R)
gives the number of linear restrictions.

11.2.3 Lag Length Selection

The lag length for the VAR(p) model may be determined using model
selection criteria. The general approach is to fit VAR(p) models with orders
p = 0, ..., pmax and choose the value of p which minimizes some model
selection criteria. Model selection criteria for VAR(p) models have the form

IC(p) = ln |Σ̃(p)|+ cT · ϕ(n, p)
where Σ̃(p) = T−1

PT
t=1 ε̂tε̂

0
t is the residual covariance matrix without a de-

grees of freedom correction from a VAR(p) model, cT is a sequence indexed
by the sample size T , and ϕ(n, p) is a penalty function which penalizes
large VAR(p) models. The three most common information criteria are the
Akaike (AIC), Schwarz-Bayesian (BIC) and Hannan-Quinn (HQ):

AIC(p) = ln |Σ̃(p)|+ 2

T
pn2

BIC(p) = ln |Σ̃(p)|+ lnT
T

pn2

HQ(p) = ln |Σ̃(p)|+ 2 ln lnT
T

pn2

The AIC criterion asymptotically overestimates the order with positive
probability, whereas the BIC and HQ criteria estimate the order consis-
tently under fairly general conditions if the true order p is less than or
equal to pmax. For more information on the use of model selection criteria
in VAR models see Lütkepohl (1991) chapter four.

11.2.4 Estimating VAR Models Using the S+FinMetrics
Function VAR

The S+FinMetrics function VAR is designed to fit and analyze VAR models
as described in the previous section. VAR produces an object of class “VAR”
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for which there are print, summary, plot and predict methods as well
as extractor functions coefficients, residuals, fitted and vcov. The
calling syntax of VAR is a bit complicated because it is designed to handle
multivariate data in matrices, data frames as well as “timeSeries” objects.
The use of VAR is illustrated with the following example.

Example 65 Bivariate VAR model for exchange rates

This example considers a bivariate VAR model for Yt = (∆st, fpt)
0,

where st is the logarithm of the monthly spot exchange rate between the US
and Canada, fpt = ft− st = iUSt − iCAt is the forward premium or interest
rate differential, and ft is the natural logarithm of the 30-day forward
exchange rate. The data over the 20 year period March 1976 through June
1996 is in the S+FinMetrics “timeSeries” lexrates.dat. The data for
the VAR model are computed as

> dspot = diff(lexrates.dat[,"USCNS"])

> fp = lexrates.dat[,"USCNF"]-lexrates.dat[,"USCNS"]

> uscn.ts = seriesMerge(dspot,fp)

> colIds(uscn.ts) = c("dspot","fp")

> uscn.ts@title = "US/CN Exchange Rate Data"

> par(mfrow=c(2,1))

> plot(uscn.ts[,"dspot"],main="1st difference of US/CA spot

+ exchange rate")

> plot(uscn.ts[,"fp"],main="US/CN interest rate

+ differential")

Figure 11.2 illustrates the monthly return ∆st and the forward premium
fpt over the period March 1976 through June 1996. Both series appear to be
I(0) (which can be confirmed using the S+FinMetrics functions unitroot
or stationaryTest) with ∆st much more volatile than fpt. fpt also ap-
pears to be heteroskedastic.

Specifying and Estimating the VAR(p) Model

To estimate a VAR(1) model for Yt use

> var1.fit = VAR(cbind(dspot,fp)~ar(1),data=uscn.ts)

Note that the VAR model is specified using an S-PLUS formula, with the
multivariate response on the left hand side of the ~ operator and the built-
in AR term specifying the lag length of the model on the right hand side.
The optional data argument accepts a data frame or “timeSeries” ob-
ject with variable names matching those used in specifying the formula.
If the data are in a “timeSeries” object or in an unattached data frame
(“timeSeries” objects cannot be attached) then the data argument must
be used. If the data are in a matrix then the data argument may be omit-
ted. For example,
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FIGURE 11.2. US/CN forward premium and spot rate.

> uscn.mat = as.matrix(seriesData(uscn.ts))

> var2.fit = VAR(uscn.mat~ar(1))

If the data are in a “timeSeries” object then the start and end options
may be used to specify the estimation sample. For example, to estimate the
VAR(1) over the sub-period January 1980 through January 1990

> var3.fit = VAR(cbind(dspot,fp)~ar(1), data=uscn.ts,

+ start="Jan 1980", end="Jan 1990", in.format="%m %Y")

may be used. The use of in.format=\%m %Y" sets the format for the date
strings specified in the start and end options to match the input format
of the dates in the positions slot of uscn.ts.
The VARmodel may be estimated with the lag length p determined using

a specified information criterion. For example, to estimate the VAR for the
exchange rate data with p set by minimizing the BIC with a maximum lag
pmax = 4 use

> var4.fit = VAR(uscn.ts,max.ar=4, criterion="BIC")

> var4.fit$info

ar(1) ar(2) ar(3) ar(4)

BIC -4028 -4013 -3994 -3973

When a formula is not specified and only a data frame, “timeSeries” or
matrix is supplied that contains the variables for the VAR model, VAR fits
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all VAR(p) models with lag lengths p less than or equal to the value given
to max.ar, and the lag length is determined as the one which minimizes
the information criterion specified by the criterion option. The default
criterion is BIC but other valid choices are logL, AIC and HQ. In the com-
putation of the information criteria, a common sample based on max.ar
is used. Once the lag length is determined, the VAR is re-estimated us-
ing the appropriate sample. In the above example, the BIC values were
computed using the sample based on max.ar=4 and p = 1 minimizes BIC.
The VAR(1) model was automatically re-estimated using the sample size
appropriate for p = 1.

Print and Summary Methods

The function VAR produces an object of class “VAR” with the following
components.

> class(var1.fit)

[1] "VAR"

> names(var1.fit)

[1] "R" "coef" "fitted" "residuals"

[5] "Sigma" "df.resid" "rank" "call"

[9] "ar.order" "n.na" "terms" "Y0"

To see the estimated coefficients of the model use the print method:

> var1.fit

Call:

VAR(formula = cbind(dspot, fp) ~ar(1), data = uscn.ts)

Coefficients:

dspot fp

(Intercept) -0.0036 -0.0003

dspot.lag1 -0.1254 0.0079

fp.lag1 -1.4833 0.7938

Std. Errors of Residuals:

dspot fp

0.0137 0.0009

Information Criteria:

logL AIC BIC HQ

2058 -4104 -4083 -4096

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996
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The first column under the label “Coefficients:” gives the estimated
coefficients for the∆st equation, and the second column gives the estimated
coefficients for the fpt equation:

∆st = −0.0036− 0.1254 ·∆st−1 − 1.4833 · fpt−1
fpt = −0.0003 + 0.0079 ·∆st−1 + 0.7938 · fpt−1

Since uscn.ts is a “timeSeries” object, the estimation time period is also
displayed.
The summary method gives more detailed information about the fitted

VAR:

> summary(var1.fit)

Call:

VAR(formula = cbind(dspot, fp) ~ar(1), data = uscn.ts)

Coefficients:

dspot fp

(Intercept) -0.0036 -0.0003

(std.err) 0.0012 0.0001

(t.stat) -2.9234 -3.2885

dspot.lag1 -0.1254 0.0079

(std.err) 0.0637 0.0042

(t.stat) -1.9700 1.8867

fp.lag1 -1.4833 0.7938

(std.err) 0.5980 0.0395

(t.stat) -2.4805 20.1049

Regression Diagnostics:

dspot fp

R-squared 0.0365 0.6275

Adj. R-squared 0.0285 0.6244

Resid. Scale 0.0137 0.0009

Information Criteria:

logL AIC BIC HQ

2058 -4104 -4083 -4096

total residual

Degree of freedom: 243 240

Time period: from Apr 1976 to Jun 1996

In addition to the coefficient standard errors and t-statistics, summary also
displays R2 measures for each equation (which are valid because each equa-
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tion is estimated by least squares). The summary output shows that the
coefficients on ∆st−1 and fpt−1 in both equations are statistically signifi-
cant at the 10% level and that the fit for the fpt equation is much better
than the fit for the ∆st equation.
As an aside, note that the S+FinMetrics function OLS may also be used

to estimate each equation in a VAR model. For example, one way to com-
pute the equation for ∆st using OLS is

> dspot.fit = OLS(dspot~ar(1)+tslag(fp),data=uscn.ts)

> dspot.fit

Call:

OLS(formula = dspot ~ar(1) + tslag(fp), data = uscn.ts)

Coefficients:

(Intercept) tslag(fp) lag1

-0.0036 -1.4833 -0.1254

Degrees of freedom: 243 total; 240 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.01373

Graphical Diagnostics

The plotmethod for “VAR” objects may be used to graphically evaluate the
fitted VAR. By default, the plot method produces a menu of plot options:

> plot(var1.fit)

Make a plot selection (or 0 to exit):

1: plot: All

2: plot: Response and Fitted Values

3: plot: Residuals

4: plot: Normal QQplot of Residuals

5: plot: ACF of Residuals

6: plot: PACF of Residuals

7: plot: ACF of Squared Residuals

8: plot: PACF of Squared Residuals

Selection:

Alternatively, plot.VAR may be called directly. The function plot.VAR
has arguments

> args(plot.VAR)

function(x, ask = T, which.plots = NULL, hgrid = F, vgrid

= F, ...)
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FIGURE 11.3. Response and fitted values from VAR(1) model for US/CN ex-
change rate data.

To create all seven plots without using the menu, set ask=F. To create
the Residuals plot without using the menu, set which.plot=2. The optional
arguments hgrid and vgrid control printing of horizontal and vertical grid
lines on the plots.
Figures 11.3 and 11.4 give the Response and Fitted Values and Residuals

plots for the VAR(1) fit to the exchange rate data. The equation for fpt fits
much better than the equation for ∆st. The residuals for both equations
look fairly random, but the residuals for the fpt equation appear to be
heteroskedastic. The qq-plot (not shown) indicates that the residuals for
the ∆st equation are highly non-normal.

Extractor Functions

The residuals and fitted values for each equation of the VAR may be ex-
tracted using the generic extractor functions residuals and fitted:

> var1.resid = resid(var1.fit)

> var1.fitted = fitted(var.fit)

> var1.resid[1:3,]

Positions dspot fp

Apr 1976 0.0044324 -0.00084150

May 1976 0.0024350 -0.00026493

Jun 1976 0.0004157 0.00002435
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FIGURE 11.4. Residuals from VAR(1) model fit to US/CN exchange rate data.

Notice that since the data are in a “timeSeries” object, the extracted
residuals and fitted values are also “timeSeries” objects.
The coefficients of the VAR model may be extracted using the generic

coef function:

> coef(var1.fit)

dspot fp

(Intercept) -0.003595149 -0.0002670108

dspot.lag1 -0.125397056 0.0079292865

fp.lag1 -1.483324622 0.7937959055

Notice that coef produces the (3 × 2) matrix Π̂ whose columns give the
estimated coefficients for each equation in the VAR(1).
To test stability of the VAR, extract the matrix Π1 and compute its

eigenvalues

> PI1 = t(coef(var1.fit)[2:3,])

> abs(eigen(PI1,only.values=T)$values)

[1] 0.7808 0.1124

Since the modulus of the two eigenvalues of Π1 are less than 1, the VAR(1)
is stable.



396 11. Vector Autoregressive Models for Multivariate Time Series

Testing Linear Hypotheses

Now, consider testing the hypothesis that Π1= 0 (i.e., Yt−1 does not help
to explain Yt) using the Wald statistic (11.5). In terms of the columns of
vec(Π) the restrictions are π1 = (c1, 0, 0)

0 and π2 = (c2, 0, 0) and may be
expressed as Rvec(Π) = r with

R =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , r =


0
0
0
0


The Wald statistic is easily constructed as follows

> R = matrix(c(0,1,0,0,0,0,

+ 0,0,1,0,0,0,

+ 0,0,0,0,1,0,

+ 0,0,0,0,0,1),

+ 4,6,byrow=T)

> vecPi = as.vector(var1.fit$coef)

> avar = R%*%vcov(var1.fit)%*%t(R)

> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)

> wald

[,1]

[1,] 417.1

> 1-pchisq(wald,4)

[1] 0

Since the p-value for the Wald statistic based on the χ2(4) distribution
is essentially zero, the hypothesis that Π1= 0 should be rejected at any
reasonable significance level.

11.3 Forecasting

Forecasting is one of the main objectives of multivariate time series analysis.
Forecasting from a VAR model is similar to forecasting from a univariate
AR model and the following gives a brief description.

11.3.1 Traditional Forecasting Algorithm

Consider first the problem of forecasting future values of Yt when the
parameters Π of the VAR(p) process are assumed to be known and there
are no deterministic terms or exogenous variables. The best linear predictor,
in terms of minimum mean squared error (MSE), of Yt+1 or 1-step forecast
based on information available at time T is

YT+1|T = c+Π1YT + · · ·+ΠpYT−p+1



11.3 Forecasting 397

Forecasts for longer horizons h (h-step forecasts) may be obtained using
the chain-rule of forecasting as

YT+h|T = c+Π1YT+h−1|T + · · ·+ΠpYT+h−p|T

where YT+j|T = YT+j for j ≤ 0. The h-step forecast errors may be ex-
pressed as

YT+h −YT+h|T =
h−1X
s=0

ΨsεT+h−s

where the matrices Ψs are determined by recursive substitution

Ψs =

p−1X
j=1

Ψs−jΠj (11.6)

withΨ0 = In andΠj = 0 for j > p.1 The forecasts are unbiased since all of
the forecast errors have expectation zero and the MSE matrix for Yt+h|T
is

Σ(h) = MSE
¡
YT+h −YT+h|T

¢
=

h−1X
s=0

ΨsΣΨ
0
s (11.7)

Now consider forecasting YT+h when the parameters of the VAR(p)
process are estimated using multivariate least squares. The best linear pre-
dictor of YT+h is now

ŶT+h|T = Π̂1ŶT+h−1|T + · · ·+ Π̂pŶT+h−p|T (11.8)

where Π̂j are the estimated parameter matrices. The h-step forecast error
is now

YT+h − ŶT+h|T =
h−1X
s=0

ΨsεT+h−s +
³
YT+h − ŶT+h|T

´
(11.9)

and the term
³
YT+h − ŶT+h|T

´
captures the part of the forecast error due

to estimating the parameters of the VAR. The MSE matrix of the h-step
forecast is then

Σ̂(h) = Σ(h) +MSE
³
YT+h − ŶT+h|T

´
1The S+FinMetrics fucntion VAR.ar2ma computes the Ψs matrices given the Πj ma-

trices using (11.6).
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In practice, the second termMSE
³
YT+h − ŶT+h|T

´
is often ignored and

Σ̂(h) is computed using (11.7) as

Σ̂(h) =
h−1X
s=0

Ψ̂sΣ̂Ψ̂
0
s (11.10)

with Ψ̂s =
Ps

j=1 Ψ̂s−jΠ̂j . Lütkepohl (1991, chapter 3) gives an approxi-

mation to MSE
³
YT+h − ŶT+h|T

´
which may be interpreted as a finite

sample correction to (11.10).
Asymptotic (1−α)·100% confidence intervals for the individual elements

of ŶT+h|T are then computed as£
ŷk,T+h|T − c1−α/2σ̂k(h), ŷk,T+h|T + c1−α/2σ̂k(h)

¤
where c1−α/2 is the (1−α/2) quantile of the standard normal distribution

and σ̂k(h) denotes the square root of the diagonal element of Σ̂(h).

Example 66 Forecasting exchange rates from a bivariate VAR

Consider computing h-step forecasts, h = 1, . . . , 12, along with estimated
forecast standard errors from the bivariate VAR(1) model for exchange
rates. Forecasts and forecast standard errors from the fitted VAR may be
computed using the generic S-PLUS predict method

> uscn.pred = predict(var1.fit,n.predict=12)

The predict function recognizes var1.fit as a “VAR” object, and calls the
appropriate method function predict.VAR. Alternatively, predict.VAR
can be applied directly on an object inheriting from class “VAR”. See the
online help for explanations of the arguments to predict.VAR.
The output of predict.VAR is an object of class “forecast” for which

there are print, summary and plot methods. To see just the forecasts, the
print method will suffice:

> uscn.pred

Predicted Values:

dspot fp

1-step-ahead -0.0027 -0.0005

2-step-ahead -0.0026 -0.0006

3-step-ahead -0.0023 -0.0008

4-step-ahead -0.0021 -0.0009

5-step-ahead -0.0020 -0.0010

6-step-ahead -0.0018 -0.0011

7-step-ahead -0.0017 -0.0011
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8-step-ahead -0.0017 -0.0012

9-step-ahead -0.0016 -0.0012

10-step-ahead -0.0016 -0.0013

11-step-ahead -0.0015 -0.0013

12-step-ahead -0.0015 -0.0013

The forecasts and their standard errors can be shown using summary:

> summary(uscn.pred)

Predicted Values with Standard Errors:

dspot fp

1-step-ahead -0.0027 -0.0005

(std.err) 0.0137 0.0009

2-step-ahead -0.0026 -0.0006

(std.err) 0.0139 0.0012

...

12-step-ahead -0.0015 -0.0013

(std.err) 0.0140 0.0015

Lütkepohl’s finite sample correction to the forecast standard errors com-
puted from asymptotic theory may be obtained by using the optional ar-
gument fs.correction=T in the call to predict.VAR.
The forecasts can also be plotted together with the original data using

the generic plot function as follows:

> plot(uscn.pred,uscn.ts,n.old=12)

where the n.old optional argument specifies the number of observations to
plot from uscn.ts. If n.old is not specified, all the observations in uscn.ts
will be plotted together with uscn.pred. Figure 11.5 shows the forecasts
produced from the VAR(1) fit to the US/CN exchange rate data2. At the
beginning of the forecast horizon the spot return is below its estimated
mean value, and the forward premium is above its mean values. The spot
return forecasts start off negative and grow slowly toward the mean, and the
forward premium forecasts decline sharply toward the mean. The forecast
standard errors for both sets of forecasts, however, are fairly large.

2Notice that the dates associated with the forecasts are not shown. This is the result
of “timeDate” objects not having a well defined frequency from which to extrapolate
dates.
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FIGURE 11.5. Predicted values from VAR(1) model fit to US/CN exchange rate
data.

11.3.2 Simulation-Based Forecasting

The previous subsection showed how to generate multivariate forecasts from
a fitted VAR model, using the chain-rule of forecasting (11.8). Since the
multivariate forecast errors (11.9) are asymptotically normally distributed
with covariance matrix (11.10), the forecasts of Yt+h can be simulated
by generating multivariate normal random variables with mean zero and
covariance matrix (11.10). These simulation-based forecasts can be ob-
tained by setting the optional argument method to "mc" in the call to
predict.VAR.
When method="mc", the multivariate normal random variables are ac-

tually generated as a vector of standard normal random variables scaled
by the Cholesky factor of the covariance matrix (11.10). Instead of using
standard normal random variables, one could also use the standardized
residuals from the fitted VAR model. Simulation-based forecasts based on
this approach are obtained by setting the optional argument method to
"bootstrap" in the call to predict.VAR.

Example 67 Simulation-based forecasts of exchange rate data from bivari-
ate VAR

The h-step forecasts (h = 1, . . . , 12) for∆st+h and fpt+h using the Monte
Carlo simulation method are
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> uscn.pred.MC = predict(var1.fit,n.predict=12,method="mc")

> summary(uscn.pred.MC)

Predicted Values with Standard Errors:

dspot fp

1-step-ahead -0.0032 -0.0005

(std.err) 0.0133 0.0009

2-step-ahead -0.0026 -0.0006

(std.err) 0.0133 0.0012

...

12-step-ahead -0.0013 -0.0013

(std.err) 0.0139 0.0015

TheMonte Carlo forecasts and forecast standard errors for fpt+h are almost
identical to those computed using the chain-rule of forecasting. The Monte
Carlo forecasts for ∆st+h are slightly different and the forecast standard
errors are slightly larger than the corresponding values computed from the
chain-rule.
The h-step forecasts computed from the bootstrap simulation method

are

> uscn.pred.boot = predict(var1.fit,n.predict=12,

+ method="bootstrap")

> summary(uscn.pred.boot)

Predicted Values with Standard Errors:

dspot fp

1-step-ahead -0.0020 -0.0005

(std.err) 0.0138 0.0009

2-step-ahead -0.0023 -0.0007

(std.err) 0.0140 0.0012

...

12-step-ahead -0.0023 -0.0013

(std.err) 0.0145 0.0015

As with the Monte Carlo forecasts, the bootstrap forecasts and forecast
standard errors for fpt+h are almost identical to those computed using the
chain-rule of forecasting. The bootstrap forecasts for ∆st+h are slightly
different from the chain-rule and Monte Carlo forecasts. In particular, the
bootstrap forecast standard errors are larger than corresponding values
from the chain-rule and Monte Carlo methods.
The simulation-based forecasts described above are different from the

traditional simulation-based approach taken in VAR literature, e.g., see
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Runkle (1987). The traditional approach is implemented using the following
procedure:

1. Obtain VAR coefficient estimates Π and residuals εt.

2. Simulate the fitted VAR model by Monte Carlo simulation or by
bootstrapping the fitted residuals ε̂t.

3. Obtain new estimates of Π and forecasts of Yt+h based on the sim-
ulated data.

The above procedure is repeated many times to obtain simulation-based
forecasts as well as their confidence intervals. To illustrate this approach,
generate 12-step ahead forecasts from the fitted VAR object var1.fit by
Monte Carlo simulation using the S+FinMetrics function simulate.VAR
as follows:

> set.seed(10)

> n.pred=12

> n.sim=100

> sim.pred = array(0,c(n.sim, n.pred, 2))

> y0 = seriesData(var1.fit$Y0)

> for (i in 1:n.sim) {

+ dat = simulate.VAR(var1.fit,n=243)

+ dat = rbind(y0,dat)

+ mod = VAR(dat~ar(1))

+ sim.pred[i,,] = predict(mod,n.pred)$values

+ }

The simulation-based forecasts are obtained by averaging the simulated
forecasts:

> colMeans(sim.pred)

[,1] [,2]

[1,] -0.0017917 -0.0012316

[2,] -0.0017546 -0.0012508

[3,] -0.0017035 -0.0012643

[4,] -0.0016800 -0.0012741

[5,] -0.0016587 -0.0012814

[6,] -0.0016441 -0.0012866

[7,] -0.0016332 -0.0012904

[8,] -0.0016253 -0.0012932

[9,] -0.0016195 -0.0012953

[10,] -0.0016153 -0.0012967

[11,] -0.0016122 -0.0012978

[12,] -0.0016099 -0.0012986
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Comparing these forecasts with those in uscn.pred computed earlier, one
can see that for the first few forecasts, these simulated forecasts are slightly
different from the asymptotic forecasts. However, at larger steps, they ap-
proach the long run stable values of the asymptotic forecasts.

Conditional Forecasting

The forecasts algorithms considered up to now are unconditional multivari-
ate forecasts. However, sometimes it is desirable to obtain forecasts of some
variables in the system conditional on some knowledge of the future path
of other variables in the system. For example, when forecasting multivari-
ate macroeconomic variables using quarterly data from a VAR model, it
may happen that some of the future values of certain variables in the VAR
model are known, because data on these variables are released earlier than
data on the other variables. By incorporating the knowledge of the future
path of certain variables, in principle it should be possible to obtain more
reliable forecasts of the other variables in the system. Another use of con-
ditional forecasting is the generation of forecasts conditional on different
“policy” scenarios. These scenario-based conditional forecasts allow one to
answer the question: if something happens to some variables in the system
in the future, how will it affect forecasts of other variables in the future?
S+FinMetrics provides a generic function cpredict for computing con-

ditional forecasts, which has a method cpredict.VAR for “VAR” objects.
The algorithms in cpredict.VAR are based on the conditional forecasting
algorithms described in Waggoner and Zha (1999). Waggoner and Zha clas-
sify conditional information into “hard” conditions and “soft conditions”.
The hard conditions restrict the future values of certain variables at fixed
values, while the soft conditions restrict the future values of certain vari-
ables in specified ranges. The arguments taken by cpredict.VAR are:

> args(cpredict.VAR)

function(object, n.predict = 1, newdata = NULL, olddata = NULL,

method = "mc", unbiased = T, variables.conditioned =

NULL, steps.conditioned = NULL, upper = NULL, lower =

NULL, middle = NULL, seed = 100, n.sim = 1000)

Like most predict methods in S-PLUS, the first argument must be a fitted
model object, while the second argument, n.predict, specifies the number
of steps to predict ahead. The arguments newdata and olddata can usually
be safely ignored, unless exogenous variables were used in fitting the model.
With classical forecasts that ignore the uncertainty in coefficient esti-

mates, hard conditional forecasts can be obtained in closed form as shown
by Doan, Litterman and Sims (1984), and Waggoner and Zha (1999). To
obtain hard conditional forecasts, the argument middle is used to specify
fixed values of certain variables at certain steps. For example, to fix the
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1-step ahead forecast of dspot in var1.fit at -0.005 and generate other
predictions for 2-step ahead forecasts, use the following command:

> cpredict(var1.fit, n.predict=2, middle=-0.005,

+ variables="dspot", steps=1)

Predicted Values:

dspot fp

1-step-ahead -0.0050 -0.0005

2-step-ahead -0.0023 -0.0007

In the call to cpredict, the optional argument variables is used to specify
the restricted variables, and steps to specify the restricted steps.
To specify a soft condition, the optional arguments upper and lower

are used to specify the upper bound and lower bound, respectively, of a
soft condition. Since closed form results are not available for soft condi-
tional forecasts, either Monte Carlo simulation or bootstrap methods are
used to obtain the actual forecasts. The simulations follow a similar proce-
dure implemented in the function predict.VAR, except that a reject/accept
method to sample from the distribution conditional on the soft conditions
is used. For example, to restrict the range of the first 2-step ahead forecasts
of dspot to be (−0.004,−0.001) use:

> cpredict(var1.fit, n.predict=2, lower=c(-0.004, -0.004),

+ upper=c(-0.001, -0.001), variables="dspot",

+ steps=c(1,2))

Predicted Values:

dspot fp

1-step-ahead -0.0027 -0.0003

2-step-ahead -0.0029 -0.0005

11.4 Structural Analysis

The general VAR(p) model has many parameters, and they may be difficult
to interpret due to complex interactions and feedback between the variables
in the model. As a result, the dynamic properties of a VAR(p) are often
summarized using various types of structural analysis. The three main types
of structural analysis summaries are (1) Granger causality tests; (2) impulse
response functions; and (3) forecast error variance decompositions. The
following sections give brief descriptions of these summary measures.
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11.4.1 Granger Causality

One of the main uses of VAR models is forecasting. The structure of the
VAR model provides information about a variable’s or a group of variables’
forecasting ability for other variables. The following intuitive notion of a
variable’s forecasting ability is due to Granger (1969). If a variable, or
group of variables, y1 is found to be helpful for predicting another variable,
or group of variables, y2 then y1 is said to Granger-cause y2; otherwise it
is said to fail to Granger-cause y2. Formally, y1 fails to Granger-cause y2
if for all s > 0 the MSE of a forecast of y2,t+s based on (y2,t, y2,t−1, . . .) is
the same as the MSE of a forecast of y2,t+s based on (y2,t, y2,t−1, . . .) and
(y1,t, y1,t−1, . . .). Clearly, the notion of Granger causality does not imply
true causality. It only implies forecasting ability.

Bivariate VAR Models

In a bivariate VAR(p) model for Yt = (y1t, y2t)
0, y2 fails to Granger-cause

y1 if all of the p VAR coefficient matrices Π1, . . . ,Πp are lower triangular.
That is, the VAR(p) model has the formµ

y1t
y2t

¶
=

µ
c1
c2

¶
+

µ
π111 0
π121 π122

¶µ
y1t−1
y2t−1

¶
+ · · ·

+

µ
πp11 0
πp21 πp22

¶µ
y1t−p
y2t−p

¶
+

µ
ε1t
ε2t

¶
so that all of the coefficients on lagged values of y2 are zero in the equation
for y1. Similarly, y1 fails to Granger-cause y2 if all of the coefficients on
lagged values of y1 are zero in the equation for y2. The p linear coefficient
restrictions implied by Granger non-causality may be tested using the Wald
statistic (11.5). Notice that if y2 fails to Granger-cause y1 and y1 fails
to Granger-cause y2, then the VAR coefficient matrices Π1, . . . ,Πp are
diagonal.

General VAR Models

Testing for Granger non-causality in general n variable VAR(p) models
follows the same logic used for bivariate models. For example, consider a
VAR(p) model with n = 3 and Yt = (y1t, y2t, y3t)

0. In this model, y2 does
not Granger-cause y1 if all of the coefficients on lagged values of y2 are zero
in the equation for y1. Similarly, y3 does not Granger-cause y1 if all of the
coefficients on lagged values of y3 are zero in the equation for y1. These
simple linear restrictions may be tested using the Wald statistic (11.5). The
reader is encouraged to consult Lütkepohl (1991) or Hamilton (1994) for
more details and examples.

Example 68 Testing for Granger causality in bivariate VAR(2) model for
exchange rates
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Consider testing for Granger causality in a bivariate VAR(2) model for
Yt = (∆st, fpt)

0. Using the notation of (11.2), fpt does not Granger cause
∆st if π

1
12 = 0 and π212 = 0. Similarly, ∆st does not Granger cause fpt if

π121 = 0 and π221 = 0. These hypotheses are easily tested using the Wald
statistic (11.5). The restriction matrix R for the hypothesis that fpt does
not Granger cause ∆st is

R =

µ
0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

¶
and the matrix for the hypothesis that ∆st does not Granger cause fpt is

R =

µ
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0

¶
The S-PLUS commands to compute and evaluate these Granger causality
Wald statistics are

> var2.fit = VAR(cbind(dspot,fp)~ar(2),data=uscn.ts)

> # H0: fp does not Granger cause dspot

> R = matrix(c(0,0,1,0,0,0,0,0,0,0,

+ 0,0,0,0,1,0,0,0,0,0),

+ 2,10,byrow=T)

> vecPi = as.vector(coef(var2.fit))

> avar = R%*%vcov(var2.fit)%*%t(R)

> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)

> wald

[,1]

[1,] 8.468844

> 1-pchisq(wald,2)

[1] 0.01448818

> R = matrix(c(0,0,0,0,0,0,1,0,0,0,

+ 0,0,0,0,0,0,0,0,1,0),

+ 2,10,byrow=T)

> vecPi = as.vector(coef(var2.fit))

> avar = R%*%vcov(var2.fit)%*%t(R)

> wald = t(R%*%vecPi)%*%solve(avar)%*%(R%*%vecPi)

> wald

[,1]

[1,] 6.157

> 1-pchisq(wald,2)

[1] 0.04604

The p-values for the Wald tests indicate a fairly strong rejection of the null
that fpt does not Granger cause ∆st but only a weak rejection of the null
that ∆st does not Granger cause fpt. Hence, lagged values of fpt appear
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to be useful for forecasting future values of ∆st and lagged values of ∆st
appear to be useful for forecasting future values of fpt.

11.4.2 Impulse Response Functions

Any covariance stationary VAR(p) process has a Wold representation of
the form

Yt= µ+ εt+Ψ1εt−1+Ψ2εt−2 + · · · (11.11)

where the (n× n) moving average matrices Ψs are determined recursively
using (11.6). It is tempting to interpret the (i, j)-th element, ψsij , of the
matrix Ψs as the dynamic multiplier or impulse response

∂yi,t+s
∂εj,t

=
∂yi,t
∂εj,t−s

= ψsij , i, j = 1, . . . , n

However, this interpretation is only possible if var(εt) = Σ is a diagonal
matrix so that the elements of εt are uncorrelated. One way to make the
errors uncorrelated is to follow Sims (1980) and estimate the triangular
structural VAR(p) model

y1t = c1 + γ011Yt−1+ · · ·+ γ01pYt−p + η1t (11.12)

y2t = c1 + β21y1t+γ
0
21Yt−1+ · · ·+ γ02pYt−p + η2t

y3t = c1 + β31y1t + β32y2t+γ
0
31Yt−1+ · · ·+ γ03pYt−p + η3t

...

ynt = c1 + βn1y1t + · · ·+ βn,n−1yn−1,t + γ0n1Yt−1+ · · ·+ γ0npYt−p + ηnt

In matrix form, the triangular structural VAR(p) model is

BYt= c+ Γ1Yt−1+Γ2Yt−2+ · · ·+ ΓpYt−p + ηt (11.13)

where

B =


1 0 · · · 0
−β21 1 0 0
...

...
. . .

...
−βn1 −βn2 · · · 1

 (11.14)

is a lower triangular matrix with 10s along the diagonal. The algebra of
least squares will ensure that the estimated covariance matrix of the error
vector ηt is diagonal. The uncorrelated/orthogonal errors ηt are referred
to as structural errors.
The triangular structural model (11.12) imposes the recursive causal or-

dering

y1 → y2 → · · ·→ yn (11.15)
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The ordering (11.15) means that the contemporaneous values of the vari-
ables to the left of the arrow → affect the contemporaneous values of the
variables to the right of the arrow but not vice-versa. These contempora-
neous effects are captured by the coefficients βij in (11.12). For example,
the ordering y1 → y2 → y3 imposes the restrictions: y1t affects y2t and y3t
but y2t and y3t do not affect y1; y2t affects y3t but y3t does not affect y2t.
Similarly, the ordering y2 → y3 → y1 imposes the restrictions: y2t affects
y3t and y1t but y3t and y1t do not affect y2; y3t affects y1t but y1t does not
affect y3t. For a VAR(p) with n variables there are n! possible recursive
causal orderings. Which ordering to use in practice depends on the context
and whether prior theory can be used to justify a particular ordering. Re-
sults from alternative orderings can always be compared to determine the
sensitivity of results to the imposed ordering.
Once a recursive ordering has been established, the Wold representation

of Yt based on the orthogonal errors ηt is given by

Yt= µ+Θ0ηt+Θ1ηt−1+Θ2ηt−2 + · · · (11.16)

where Θ0 = B−1 is a lower triangular matrix. The impulse responses to
the orthogonal shocks ηjt are

∂yi,t+s
∂ηj,t

=
∂yi,t
∂ηj,t−s

= θsij , i, j = 1, . . . , n; s > 0 (11.17)

where θsij is the (i, j) th element of Θs. A plot of θ
s
ij against s is called the

orthogonal impulse response function (IRF) of yi with respect to ηj . With
n variables there are n2 possible impulse response functions.
In practice, the orthogonal IRF (11.17) based on the triangular VAR(p)

(11.12) may be computed directly from the parameters of the non triangular
VAR(p) (11.1) as follows. First, decompose the residual covariance matrix
Σ as

Σ = ADA0

whereA is an invertible lower triangular matrix with 10s along the diagonal
and D is a diagonal matrix with positive diagonal elements. Next, define
the structural errors as

ηt= A
−1εt

These structural errors are orthogonal by construction since var(ηt) =
A−1ΣA−10= A−1ADA0A−10= D. Finally, re-express the Wold represen-
tation (11.11) as

Yt = µ+AA−1εt+Ψ1AA−1εt−1+Ψ2AA−1εt−2 + · · ·
= µ+Θ0ηt +Θ1ηt−1+Θ2ηt−2 + · · ·

where Θj= ΨjA. Notice that the structural B matrix in (11.13) is equal
to A−1.
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Computing the Orthogonal Impulse Response Function Using the
S+FinMetrics Function impRes

The orthogonal impulse response function (11.17) from a triangular struc-
tural VAR model (11.13) may be computed using the S+FinMetrics func-
tion impRes. The function impRes has arguments

> args(impRes)

function(x, period = NULL, std.err = "none", plot = F,

unbiased = T, order = NULL, ...)

where x is an object of class “VAR” and period specifies the number of
responses to compute. By default, no standard errors for the responses
are computed. To compute asymptotic standard errors for the responses,
specify std.err="asymptotic". To create a panel plot of all the response
functions, specify plot=T. The default recursive causal ordering is based on
the ordering of the variables in Yt when the VAR model is fit. The optional
argument order may be used to specify a different recursive causal order-
ing for the computation of the impulse responses. The argument order ac-
cepts a character vector of variable names whose order defines the recursive
causal ordering. The output of impRes is an object of class “impDecomp” for
which there are print, summary and plot methods. The following example
illustrates the use of impRes.

Example 69 IRF from VAR(1) for exchange rates

Consider again the VAR(1) model for Yt = (∆st, fpt)
0. For the impulse

response analysis, the initial ordering of the variables imposes the assump-
tion that structural shocks to fpt have no contemporaneous effect on ∆st
but structural shocks to ∆st do have a contemporaneous effect on fpt. To
compute the four impulse response functions

∂∆st+h
∂η1t

,
∂∆st+h
∂η2t

,
∂fpt+h
∂η1t

,
∂fpt+h
∂η2t

for h = 1, . . . , 12 we use S+FinMetrics function impRes. The first twelve
impulse responses from the VAR(1) model for exchange rates are computed
using

> uscn.irf = impRes(var1.fit, period=12, std.err="asymptotic")

The print method shows the impulse response values without standard
errors:

> uscn.irf

Impulse Response Function:

(with responses in rows, and innovations in columns)
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, , lag.0

dspot fp

dspot 0.0136 0.0000

fp 0.0000 0.0009

, , lag.1

dspot fp

dspot -0.0018 -0.0013

fp 0.0001 0.0007

, , lag.2

dspot fp

dspot 0.0000 -0.0009

fp 0.0001 0.0006

...

, , lag.11

dspot fp

dspot 0.0000 -0.0001

fp 0.0000 0.0001

The summary method will display the responses with standard errors and
t-statistics. The plot method will produce a four panel Trellis graphics
plot of the impulse responses

> plot(uscn.irf)

A plot of the impulse responses can also be created in the initial call to
impRes by using the optional argument plot=T.
Figure 11.6 shows the impulse response functions along with asymptotic

standard errors. The top row shows the responses of ∆st to the structural
shocks, and the bottom row shows the responses of fpt to the structural
shocks. In response to the first structural shock, η1t, ∆st initially increases
but then drops quickly to zero after 2 months. Similarly, fpt initially in-
creases, reaches its peak response in 2 months and then gradually drops
off to zero after about a year. In response to the second shock, η2t, by
assumption ∆st has no initial response. At one month, a sharp drop occurs
in ∆st followed by a gradual return to zero after about a year. In contrast,
fpt initially increases and then gradually drops to zero after about a year.
The orthogonal impulse responses in Figure 11.6 are based on the recur-

sive causal ordering ∆st → fpt. It must always be kept in mind that this
ordering identifies the orthogonal structural shocks η1t and η2t. If the or-
dering is reversed, then a different set of structural shocks will be identified,
and these may give very different impulse response functions. To compute
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FIGURE 11.6. Impulse response function from VAR(1) model fit to US/CN ex-
change rate data with ∆st ordered first.

the orthogonal impulse responses using the alternative ordering fpt → ∆st
specify order=c("fp","dspot") in the call to impRes:

> uscn.irf2 = impRes(var1.fit,period=12,std.err="asymptotic",

+ order=c("fp","dspot"),plot=T)

These impulse responses are presented in Figure 11.7 and are almost iden-
tical to those computed using the ordering ∆st → fpt. The reason for this
response is that the reduced form VAR residuals ε̂1t and ε̂2t are almost
uncorrelated. To see this, the residual correlation matrix may be computed
using

> sd.vals = sqrt(diag(var1.fit$Sigma))

> cor.mat = var1.fit$Sigma/outer(sd.vals,sd.vals)

> cor.mat

dspot fp

dspot 1.000000 0.033048

fp 0.033048 1.000000

Because of the near orthogonality in the reduced form VAR errors, the
error in the ∆st equation may be interpreted as an orthogonal shock to the
exchange rate and the error in the fpt equation may be interpreted as an
orthogonal shock to the forward premium.
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FIGURE 11.7. Impulse response function from VAR(1) model fit to US/CN ex-
change rate with fpt ordered first.

11.4.3 Forecast Error Variance Decompositions

The forecast error variance decomposition (FEVD) answers the question:
what portion of the variance of the forecast error in predicting yi,T+h is
due to the structural shock ηj? Using the orthogonal shocks ηt the h-step
ahead forecast error vector, with known VAR coefficients, may be expressed
as

YT+h −YT+h|T =
h−1X
s=0

ΘsηT+h−s

For a particular variable yi,T+h, this forecast error has the form

yi,T+h − yi,T+h|T =
h−1X
s=0

θsi1η1,T+h−s + · · ·+
h−1X
s=0

θsinηn,T+h−s

Since the structural errors are orthogonal, the variance of the h-step fore-
cast error is

var(yi,T+h − yi,T+h|T ) = σ2η1

h−1X
s=0

(θsi1)
2
+ · · ·+ σ2ηn

h−1X
s=0

(θsin)
2
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where σ2ηj = var(ηjt). The portion of var(yi,T+h − yi,T+h|T ) due to shock
ηj is then

FEVDi,j(h) =
σ2ηj

Ph−1
s=0

¡
θsij
¢2

σ2η1
Ph−1

s=0 (θ
s
i1)

2 + · · ·+ σ2ηn
Ph−1

s=0 (θ
s
in)

2
, i, j = 1, . . . , n

(11.18)
In a VAR with n variables there will be n2 FEVDi,j(h) values. It must be
kept in mind that the FEVD in (11.18) depends on the recursive causal or-
dering used to identify the structural shocks ηt and is not unique. Different
causal orderings will produce different FEVD values.

Computing the FEVD Using the S+FinMetrics Function fevDec

Once a VAR model has been fit, the S+FinMetrics function fevDec may
be used to compute the orthogonal FEVD. The function fevDec has argu-
ments

> args(fevDec)

function(x, period = NULL, std.err = "none", plot = F,

unbiased = F, order = NULL, ...)

where x is an object of class “VAR” and period specifies the number of
responses to compute. By default, no standard errors for the responses
are computed and no plot is created. To compute asymptotic standard
errors for the responses, specify std.err="asymptotic" and to plot the
decompositions, specify plot=T. The default recursive causal ordering is
based on the ordering of the variables inYt when the VAR model is fit. The
optional argument ordermay be used to specify a different recursive causal
ordering for the computation of the FEVD. The argument order accepts
a text string vector of variable names whose order defines the recursive
causal ordering. The output of fevDec is an object of class “impDecomp”
for which there are print, summary and plot methods. The use of fevDec
is illustrated with the following example.

Example 70 FEVD from VAR(1) for exchange rates

The orthogonal FEVD of the forecast errors from the VAR(1) model
fit to the US/CN exchange rate data using the recursive causal ordering
∆st → fpt is computed using

> uscn.fevd = fevDec(var1.fit,period=12,

+ std.err="asymptotic")

> uscn.fevd

Forecast Error Variance Decomposition:

(with responses in rows, and innovations in columns)
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, , 1-step-ahead

dspot fp

dspot 1.0000 0.0000

fp 0.0011 0.9989

, , 2-step-ahead

dspot fp

dspot 0.9907 0.0093

fp 0.0136 0.9864

...

, , 12-step-ahead

dspot fp

dspot 0.9800 0.0200

fp 0.0184 0.9816

The summary method adds standard errors to the above output if they are
computed in the call to fevDec. The plot method produces a four panel
Trellis graphics plot of the decompositions:

> plot(uscn.fevd)

The FEVDs in Figure 11.8 show that most of the variance of the forecast
errors for ∆st+s at all horizons s is due to the orthogonal ∆st innovations.
Similarly, most of the variance of the forecast errors for fpt+s is due to the
orthogonal fpt innovations.
The FEVDs using the alternative recursive causal ordering fpt → ∆st

are computed using

> uscn.fevd2 = fevDec(var1.fit,period=12,

+ std.err="asymptotic",order=c("fp","dspot"),plot=T)

and are illustrated in Figure 11.9. Since the residual covariance matrix is
almost diagonal (see analysis of IRF above), the FEVDs computed using
the alternative ordering are almost identical to those computed with the
initial ordering.

11.5 An Extended Example

In this example the causal relations and dynamic interactions among monthly
real stock returns, real interest rates, real industrial production growth and
the inflation rate is investigated using a VAR model. The analysis is similar
to that of Lee (1992). The variables are in the S+FinMetrics “timeSeries”
object varex.ts

> colIds(varex.ts)
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FIGURE 11.8. Orthogonal FEVDs computed from VAR(1) model fit to US/CN
exchange rate data using the recursive causal ordering with ∆st first.

[1] "MARKET.REAL" "RF.REAL" "INF" "IPG"

Details about the data are in the documentation slot of varex.ts

> varex.ts@documentation

To be comparable to the results in Lee (1992), the analysis is conducted
over the postwar period January 1947 through December 1987

> smpl = (positions(varex.ts) >= timeDate("1/1/1947") &

+ positions(varex.ts) < timeDate("1/1/1988"))

The data over this period is displayed in Figure 11.10. All variables appear
to be I(0), but the real T-bill rate and the inflation rate appear to be highly
persistent.
To begin the analysis, autocorrelations and cross correlations at leads

and lags are computed using

> varex.acf = acf(varex.ts[smpl,])

and are illustrated in Figure 11.11. The real return on the market shows a
significant positive first lag autocorrelation, and inflation appears to lead
the real market return with a negative sign. The real T-bill rate is highly
positively autocorrelated, and inflation appears to lead the real T-bill rate
strongly with a negative sign. Inflation is also highly positively autocorre-
lated and, interestingly, the real T-bill rate appears to lead inflation with
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FIGURE 11.9. Orthogonal FEVDs from VAR(1) model fit to US/CN exchange
rate data using recursive causal ordering with fpt first.

a positive sign. Finally, industrial production growth is slightly positively
autocorrelated, and the real market return appears to lead industrial pro-
duction growth with a positive sign.
The VAR(p) model is fit with the lag length selected by minimizing the

AIC and a maximum lag length of 6 months:

> varAIC.fit = VAR(varex.ts,max.ar=6,criterion="AIC",

+ start="Jan 1947",end="Dec 1987",

+ in.format="%m %Y")

The lag length selected by minimizing AIC is p = 2:

> varAIC.fit$info

ar(1) ar(2) ar(3) ar(4) ar(5) ar(6)

AIC -14832 -14863 -14853 -14861 -14855 -14862

> varAIC.fit$ar.order

[1] 2

The results of the VAR(2) fit are

> summary(varAIC.out)

Call:

VAR(data = varex.ts, start = "Jan 1947", end = "Dec 1987",
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FIGURE 11.10. Monthly data on stock returns, interest rates, output growth and
inflation.

max.ar = 6, criterion = "AIC", in.format = "%m %Y")

Coefficients:

MARKET.REAL RF.REAL INF IPG

(Intercept) 0.0074 0.0002 0.0010 0.0019

(std.err) 0.0023 0.0001 0.0002 0.0007

(t.stat) 3.1490 4.6400 4.6669 2.5819

MARKET.REAL.lag1 0.2450 0.0001 0.0072 0.0280

(std.err) 0.0470 0.0011 0.0042 0.0146

(t.stat) 5.2082 0.0483 1.7092 1.9148

RF.REAL.lag1 0.8146 0.8790 0.5538 0.3772

(std.err) 2.0648 0.0470 0.1854 0.6419

(t.stat) 0.3945 18.6861 2.9867 0.5877

INF.lag1 -1.5020 -0.0710 0.4616 -0.0722

(std.err) 0.4932 0.0112 0.0443 0.1533

(t.stat) -3.0451 -6.3147 10.4227 -0.4710

MARKET.REAL RF.REAL INF IPG

IPG.lag1 -0.0003 0.0031 -0.0143 0.3454



418 11. Vector Autoregressive Models for Multivariate Time Series

 MARKET.REAL  

AC
F

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 MARKET.REAL and RF.REAL

0 5 10 15 20

-0
.0

5
0.

0
0.

05

 MARKET.REAL and INF

0 5 10 15 20

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10  MARKET.REAL and IPG

0 5 10 15 20

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05

 RF.REAL and MARKET.REAL

AC
F

-20 -15 -10 -5 0

-0
.0

5
0.

0
0.

05
0.

10

 RF.REAL  

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 RF.REAL and INF

0 5 10 15 20

-0
.3

-0
.2

-0
.1

0.
0

0.
1  RF.REAL and IPG

0 5 10 15 20

-0
.0

5
0.

0
0.

05
0.

10

 INF and MARKET.REAL

AC
F

-20 -15 -10 -5 0

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05

 INF and RF.REAL

-20 -15 -10 -5 0

-0
.1

5
-0

.1
0

-0
.0

5
0.

0
0.

05
0.

10

 INF  

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 INF and IPG

0 5 10 15 20

-0
.0

5
0.

0
0.

05

 IPG and MARKET.REAL

Lag

AC
F

-20 -15 -10 -5 0-0
.1

0
-0

.0
5

0.
0

0.
05

0.
10

0.
15

0.
20

 IPG and RF.REAL

Lag-20 -15 -10 -5 0

-0
.0

5
0.

0
0.

05

 IPG and INF

Lag-20 -15 -10 -5 0

-0
.2

0
-0

.1
5

-0
.1

0
-0

.0
5

0.
0

0.
05

 IPG  

Lag0 5 10 15 20

-0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FIGURE 11.11. Autocorrelations and cross correlations at leads and lags of data
in VAR model.

(std.err) 0.1452 0.0033 0.0130 0.0452

(t.stat) -0.0018 0.9252 -1.0993 7.6501

MARKET.REAL.lag2 -0.0500 0.0022 -0.0066 0.0395

(std.err) 0.0466 0.0011 0.0042 0.0145

(t.stat) -1.0727 2.0592 -1.5816 2.7276

RF.REAL.lag2 -0.3481 0.0393 -0.5855 -0.3289

(std.err) 1.9845 0.0452 0.1782 0.6169

(t.stat) -0.1754 0.8699 -3.2859 -0.5331

INF.lag2 -0.0602 0.0079 0.2476 -0.0370

(std.err) 0.5305 0.0121 0.0476 0.1649

(t.stat) -0.1135 0.6517 5.1964 -0.2245

MARKET.REAL RF.REAL INF IPG

IPG.lag2 -0.1919 0.0028 0.0154 0.0941

(std.err) 0.1443 0.0033 0.0130 0.0449

(t.stat) -1.3297 0.8432 1.1868 2.0968

Regression Diagnostics:

MARKET.REAL RF.REAL INF IPG
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R-squared 0.1031 0.9299 0.4109 0.2037

Adj. R-squared 0.0882 0.9287 0.4011 0.1905

Resid. Scale 0.0334 0.0008 0.0030 0.0104

Information Criteria:

logL AIC BIC HQ

7503 -14935 -14784 -14875

total residual

Degree of freedom: 489 480

Time period: from Mar 1947 to Nov 1987

The signs of the statistically significant coefficient estimates corroborate
the informal analysis of the multivariate autocorrelations and cross lag au-
tocorrelations. In particular, the real market return is positively related to
its own lag but negatively related to the first lag of inflation. The real T-bill
rate is positively related to its own lag, negatively related to the first lag of
inflation, and positively related to the first lag of the real market return. In-
dustrial production growth is positively related to its own lag and positively
related to the first two lags of the real market return. Judging from the
coefficients it appears that inflation Granger causes the real market return
and the real T-bill rate, the real T-bill rate Granger causes inflation, and
the real market return Granger causes the real T-bill rate and industrial
production growth. These observations are confirmed with formal tests for
Granger non-causality. For example, the Wald statistic for testing the null
hypothesis that the real market return does not Granger-cause industrial
production growth is

> bigR = matrix(0,2,36)

> bigR[1,29]=bigR[2,33]=1

> vecPi = as.vector(coef(varAIC.fit))

> avar = bigR%*%vcov(varAIC.fit)%*%t(bigR)

> wald = t(bigR%*%vecPi)%*%solve(avar)%*%(bigR%*%vecPi)

> as.numeric(wald)

[1] 13.82

> 1-pchisq(wald,2)

[1] 0.0009969

The 24-period IRF using the recursive causal ordering MARKET.REAL →
RF.REAL → IPG → INF is computed using

> varAIC.irf = impRes(varAIC.fit,period=24,

+ order=c("MARKET.REAL","RF.REAL","IPG","INF"),

+ std.err="asymptotic",plot=T)

and is illustrated in Figure 11.12. The responses of MARKET.REAL to unex-
pected orthogonal shocks to the other variables are given in the first row of
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FIGURE 11.12. IRF using the recursive causal ordering MARKET.REAL→ RF.REAL

→ IPG → INF.

the figure. Most notable is the strong negative response of MARKET.REAL to
an unexpected increase in inflation. Notice that it takes about ten months
for the effect of the shock to dissipate. The responses of RF.REAL to the
orthogonal shocks is given in the second row of the figure. RF.REAL also
reacts negatively to an inflation shock and the effect of the shock is felt for
about two years. The responses of IPG to the orthogonal shocks is given
in the third row of the figure. Industrial production growth responds posi-
tively to an unexpected shock to MARKET.REAL and negatively to shocks to
RF.REAL and INF. These effects, however, are generally short term. Finally,
the fourth row gives the responses of INF to the orthogonal shocks. Infla-
tion responds positively to a shock to the real T-bill rate, but this effect is
short-lived.
The 24 month FEVD computed using the recursive causal ordering as

specified by MARKET.REAL → RF.REAL → IPG → INF,

> varAIC.fevd = fevDec(varAIC.out,period=24,

> order=c("MARKET.REAL","RF.REAL","IPG","INF"),

> std.err="asymptotic",plot=T)
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FIGURE 11.13. FEVDs using the recursive causal ordering MARKET.REAL →
RF.REAL → IPG → INF.

is illustrated in Figure 11.13. The first row gives the variance decom-
positions for MARKET.REAL and shows that most of the variance of the
forecast errors is due to own shocks. The second row gives the decomposi-
tions for RF.REAL. At short horizons, most of the variance is attributable
to own shocks but at long horizons inflation shocks account for almost
half the variance. The third row gives the variance decompositions for IPG.
Most of the variance is due to own shocks and a small fraction is due to
MARKET.REAL shocks. Finally, the fourth row shows that the forecast error
variance of INF is due mostly to its own shocks.
The IRFs and FEVDs computed above depend on the imposed recursive

causal ordering. However, in this example, the ordering of the variables will
have little effect on the IRFs and FEVDs because the errors in the reduced
form VAR are nearly uncorrelated:

> sd.vals = sqrt(diag(varAIC.out$Sigma))

> cor.mat = varAIC.out$Sigma/outer(sd.vals,sd.vals)

> cor.mat

MARKET.REAL RF.REAL INF IPG

MARKET.REAL 1.00000 -0.16855 -0.04518 0.03916

RF.REAL -0.16855 1.00000 0.13046 0.03318

INF -0.04518 0.13046 1.00000 0.04732

IPG 0.03916 0.03318 0.04732 1.00000
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11.6 Bayesian Vector Autoregression

VAR models with many variables and long lags contain many parameters.
Unrestricted estimation of these models reqires lots of data and often the
estimated parameters are not very precise, the results are hard to inter-
pret, and forecasts may appear more precise than they really are because
standard error bands do not account for parameter uncertainty. The esti-
mates and forecasts can be improved if one has prior information about
the structure of the model or the possible values of the parameters or func-
tions of the parameters. In a classical framework, it is difficult to incorpo-
rate non-sample information into the estimation. Nonsample information
is easy to incorporate in a Bayesian framework. A Bayesian framework
also naturally incorporates parameter uncertainty into common measures
of precision. This section briefly describes the Bayesian VAR modeling
tools in S+FinMetrics and illustrates these tools with an example. Details
of underlying Bayesian methods are given in Sims and Zha (1998) and Zha
(1998).

11.6.1 An Example of a Bayesian VAR Model

S+FinMetrics comes with a “timeSeries” object policy.dat, which con-
tains six U.S. macroeconomic variables:

> colIds(policy.dat)

[1] "CP" "M2" "FFR" "GDP" "CPI" "U"

which represent IMF’s index of world commodity prices, M2 money stock,
federal funds rate, real GDP, consumer price index for urban consumers,
and civilian unemployment rate. The data set contains monthly observa-
tions from January 1959 to March 1998. Tao Zha and his co-authors have
analyzed this data set in a number of papers, for example see Zha (1998).
To use the same time period as in Zha (1998), create a subset of the data:

> zpolicy.dat = policy.dat[1:264,]

> zpolicy.mat = as.matrix(seriesData(zpolicy.dat))

which contains monthly observations from January 1959 to December
1980.

Estimating a Bayesian VAR Model

To estimate a Bayesian vector autoregression model, use the S+FinMetrics
function BVAR. For macroeconomic modeling, it is usually found that many
trending macroeconomic variables have a unit root, and in some cases,
they may also have a cointegrating relationship (as described in the next
chapter). To incorporate these types of prior beliefs into the model, use
the unit.root.dummy and coint.dummy optional arguments to the BVAR
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function, which add some dummy observations to the beginning of the data
to reflect these beliefs:

> zpolicy.bar13 = BVAR(zpolicy.mat~ar(13), unit.root=T,

+ coint=T)

> class(zpolicy.bar13)

[1] "BVAR"

The returned object is of class “BVAR”, which inherits from “VAR”, so many
method functions for “VAR” objects work similarly for “BVAR” objects, such
as the extractor functions, impulse response functions, and forecast error
variance decomposition functions.
The Bayesian VAR models are controlled through a set of hyper param-

eters, which can be specified using the optional argument control, which
is usually a list returned by the function BVAR.control. For example, the
tightness of the belief in the unit root prior and cointegration prior is spec-
ified by mu5 and mu6, respectively. To see what default values are used for
these hyper parameters, use

> args(BVAR.control)

function(L0 = 0.9, L1 = 0.1, L2 = 1, L3 = 1, L4 = 0.05,

mu5 = 5, mu6 = 5)

For the meanings of these hyper parameters, see the online help file for
BVAR.control.

Adding Exogenous Variables to the Model

Other exogenous variables can be added to the estimation formula, just
as for OLS and VAR functions. The BVAR function and related functions
will automatically take that into consideration and return the coefficient
estimates for those variables.

Unconditional Forecasts

To forecast from a fitted Bayesian VAR model, use the generic predict
function, which automatically calls the method function predict.BVAR for
an object inheriting from class “BVAR”. For example, to compute 12-step
ahead forecasts use

> zpolicy.bpred = predict(zpolicy.bar13,n.predict=12)

> class(zpolicy.bpred)

[1] "forecast"

> names(zpolicy.bpred)

[1] "values" "std.err" "draws"

> zpolicy.bpred

Predicted Values:



424 11. Vector Autoregressive Models for Multivariate Time Series

4.
5

4.
6

4.
7

4.
8 CP

4.
3

4.
4

4.
5

4.
6

245 250 255 260 265 270 275

CPI

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

FFR

8.
42

8.
43

8.
44

8.
45

8.
46

8.
47

245 250 255 260 265 270 275

GDP

7.
25

7.
30

7.
35

7.
40

7.
45

M2

0.
06

0.
07

0.
08

0.
09

0.
10

245 250 255 260 265 270 275

U

index

va
lu

es

FIGURE 11.14. Forecasts from Bayesian VAR model.

CP M2 FFR GDP CPI U

1-step-ahead 4.6354 7.3794 0.1964 8.4561 4.4714 0.0725

2-step-ahead 4.6257 7.3808 0.1930 8.4546 4.4842 0.0732

3-step-ahead 4.6247 7.3834 0.1823 8.4505 4.4960 0.0746

4-step-ahead 4.6310 7.3876 0.1670 8.4458 4.5065 0.0763

5-step-ahead 4.6409 7.3931 0.1515 8.4414 4.5160 0.0785

6-step-ahead 4.6503 7.3998 0.1384 8.4394 4.5244 0.0810

7-step-ahead 4.6561 7.4075 0.1309 8.4390 4.5321 0.0833

8-step-ahead 4.6552 7.4159 0.1307 8.4403 4.5397 0.0852

9-step-ahead 4.6496 7.4242 0.1362 8.4428 4.5475 0.0867

10-step-ahead 4.6415 7.4323 0.1451 8.4453 4.5561 0.0879

11-step-ahead 4.6321 7.4402 0.1546 8.4473 4.5655 0.0889

12-step-ahead 4.6232 7.4476 0.1618 8.4482 4.5753 0.0899

The forecasts can also be plotted along with the original data using

> plot(zpolicy.bpred, zpolicy.mat, n.old=20)

The resulting plot is shown in Figure 11.14. The Bayesian forecasts usually
have wider error bands than classical forecasts, because they take into ac-
count the uncertainty in the coefficient estimates. To ignore the uncertainty
in coefficient estimates, one can call the classical VAR predict method
function, predict.VAR, directly instead of the generic predict function.
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The forecasts from Bayesian VAR models are of class “forecast”, and
are computed using Monte Carlo integration. By default, 1000 simulation
draws are used. To change the number of simulation draws and random
seed, specify the n.sim and seed optional arguments, respectively. For
forecasts from Bayesian VAR models, there is one more component in the
returned object: draws, which contains all the simulated forecasts. This
can be used to assess other statistical properties of the forecasts.

11.6.2 Conditional Forecasts

As mentioned earlier, conditional forecasts from classical VAR models ig-
nore the uncertainty in estimated coefficients. In contrast, conditional fore-
casts from Bayesian VAR models take into account the uncertainty asso-
ciated with estimated coefficients. To perform conditional forecasts from a
fitted Bayesian VAR model, use the generic cpredict function. For exam-
ple, if it is known that FFR in January 1981 is between 0.185 and 0.195, one
can incorporate this (soft condition) information into the forecasts using:

> zpolicy.spred = cpredict(zpolicy.bar13, 12, steps=1,

+ variables="FFR", upper=0.195, lower=0.185)

> zpolicy.spred

Predicted Values:

CP M2 FFR GDP CPI U

1-step-ahead 4.6374 7.3797 0.1910 8.4554 4.4714 0.0729

2-step-ahead 4.6286 7.3816 0.1855 8.4540 4.4840 0.0736

3-step-ahead 4.6279 7.3850 0.1743 8.4498 4.4954 0.0752

4-step-ahead 4.6349 7.3899 0.1587 8.4452 4.5057 0.0768

5-step-ahead 4.6447 7.3960 0.1443 8.4414 4.5149 0.0791

6-step-ahead 4.6525 7.4033 0.1324 8.4406 4.5231 0.0814

7-step-ahead 4.6549 7.4114 0.1270 8.4412 4.5307 0.0835

8-step-ahead 4.6523 7.4201 0.1283 8.4428 4.5383 0.0851

9-step-ahead 4.6453 7.4284 0.1349 8.4457 4.5461 0.0864

10-step-ahead 4.6389 7.4365 0.1432 8.4482 4.5547 0.0876

11-step-ahead 4.6317 7.4444 0.1516 8.4501 4.5641 0.0885

12-step-ahead 4.6264 7.4519 0.1572 8.4511 4.5741 0.0896

For conditional forecasts with soft conditions, a Monte Carlo integra-
tion with acceptance/rejection method is used. By default, 1000 simulation
draws are used. However, it may occur that only a small number of draws
satisfy the soft conditions if the intervals are very tight. To see how many
draws satisfied the soft conditions and thus are used for inference, simply
check the dimension of the draws component of the returned object (see
the on-line help file for forecast.object for details):
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> dim(zpolicy.spred$draws)

[1] 372 72

In this case, only 372 out of 1000 simulation draws satisfied the con-
ditions. To continue simulating from the posterior moment distribution,
use the same command as before, with seed set to the current value of
.Random.seed:

> zpolicy.spred2 = cpredict(zpolicy.bar13, 12, steps=1,

+ variables="FFR", upper=0.195, lower=0.185, seed=.Random.seed)

> dim(zpolicy.spred2$draws)

[1] 389 72

Note that the draws in zpolicy.spred2 can be combined with the draws
in zpolicy.spred to obtain an updated and more accurate estimate of
conditional forecasts.
To ignore the coefficient uncertainty for the conditional forecasts, call

the classical method function cpredict.VAR directly on a fitted Bayesian
VAR object. The technique introduced above can also be used for classical
prediction with soft conditions.
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