
News
The Newsletter of the R Project Volume 1/1, January 2001

Editorial
by Kurt Hornik and Friedrich Leisch

Welcome to the first volume of R News, the newslet-
ter of the R project for statistical computing. R News
will feature short to medium length articles covering
topics that might be of interest to users or developers
of R, including

• Changes in R: new features of the latest release

• Changes on CRAN: new add-on packages,
manuals, binary distributions, mirrors, . . .

• Add-on packages: short introductions to or re-
views of R extension packages

• Programmer’s Niche: nifty hints for program-
ming in R (or S)

• Applications: Examples of analyzing data with
R

The newsletter as a medium for communication
intends to fill the gap between the R mailing lists and
scientific journals: Compared with emails it is more
persistent, one can cite articles in the newsletter and
because the newsletter is edited it has better quality
control. On the other hand, when compared to scien-
tific journals, it is faster, less formal, and last but not
least focused on R.

As all of R, R News is a volunteer project. The
editorial board currently consists of the R core devel-
opment team plus Bill Venables. We are very happy
that Bill—one of the authorities on programming the
S language—has offered himself as editor of “Pro-
grammer’s Niche”, a regular column on R/S pro-
gramming.

This first volume already features a broad range
of different articles, both from R core members
and other developers in the R community (without
whom R would never have grown to what it is now).
The success of R News critically depends on the ar-
ticles in it, hence we want to ask all of you to sub-
mit to R News. There is no formal reviewing pro-
cess yet, however articles will be reviewed by the ed-
itorial board to ensure the quality of the newsletter.
Submissions should simply be sent to the editors by
email, see the article on page 30 for details on how to
write articles.

We really hope you will enjoy reading R News!

Kurt Hornik
Technische Universität Wien, Austria
Kurt.Hornik@ci.tuwien.ac.at

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

Contents of this issue:

Editorial . 1
What is R? . 2
R Resources . 3
Changes in R . 4
Changes on CRAN 8
Under New Memory Management 10
On Exact Rank Tests in R 11
Porting R to the Macintosh 13

The density of the non-central chi-squared dis-
tribution for large values of the noncentrality
parameter . 14

Connections . 16
Using Databases with R 18
Rcgi 4: Making Web Statistics Even Easier . . . 20
Omegahat Packages for R 21
Using XML for Statistics: The XML Package . . 24
Programmer’s Niche 27
Writing Articles for R News 30
Upcoming Events 32

mailto:Kurt.Hornik@ci.tuwien.ac.at
mailto:Friedrich.Leisch@ci.tuwien.ac.at

Vol. 1/1, January 2001 2

What is R?
A combined version of the files README and
THANKS from the R source tree.

by the R Core Team

Introduction

R is “GNU S” — A language and environment for
statistical computing and graphics. R is similar to
the award-winning S system, which was developed
at Bell Laboratories by John Chambers et al. It pro-
vides a wide variety of statistical and graphical tech-
niques. R is free software distributed under a GNU-
style copyleft.

The core of R is an interpreted computer language
with a syntax superficially similar to C, but which is
actually a “functional programming language” with
capabilities similar to Scheme. The language allows
branching and looping as well as modular program-
ming using functions. Most of the user-visible func-
tions in R are written in R, calling upon a smaller set
of internal primitives. It is possible for the user to in-
terface to procedures written in C, C++ or FORTRAN
languages for efficiency, and also to write additional
primitives.

The R distribution contains functionality for a
large number of statistical procedures. Among these
are: linear and generalized linear models, nonlin-
ear regression models, time series analysis, classical
parametric and nonparametric tests, clustering and
smoothing. There is also a large set of functions
which provide a flexible graphical environment for
creating various kinds of data presentations.

A package specification allows the production of
loadable modules for specific purposes, and several
contributed packages are made available through the
CRAN sites (see the article on “R Resources” in this is-
sue).

History

R was initially written by Robert Gentleman and
Ross Ihaka of the Statistics Department of the Uni-
versity of Auckland. In addition, a large group of in-
dividuals has contributed to R by sending code and
bug reports.

Since mid-1997 there has been a core group who
can modify the R source code CVS archive. The
group currently consists of

Douglas Bates, John Chambers, Pe-
ter Dalgaard, Robert Gentleman, Kurt
Hornik, Ross Ihaka, Friedrich Leisch,
Thomas Lumley, Martin Maechler, Guido
Masarotto, Paul Murrell, Brian Ripley,
Duncan Temple Lang and Luke Tierney.

Present status

The present version implements most of the func-
tionality in the 1988 book “The New S Language” (the
“Blue Book”) and many of the applications. In addi-
tion, we have implemented a large part of the func-
tionality from the 1992 book “Statistical Models in S”
(the “White Book”).

All the R functions have been documented in
the form of help pages in an “output independent”
form which can be used to create versions for HTML,
LATEX, text etc. An 800+ page Reference Index (a col-
lection of all the help pages) can be obtained in a va-
riety of formats. The document “An Introduction to
R” provides a more user-friendly starting point, and
there is an “R Language Definition” manual and more
specialized manuals on data import/export and ex-
tending R. See the file ‘INSTALL’ in the R sources for
instructions on how to generate these documents.

Goals

Our aim at the start of this project was to demon-
strate that it was possible to produce an S-like en-
vironment which did not suffer from the memory-
demands and performance problems which S has.
Somewhat later, we started to turn R into a “real”
system, but unfortunately we lost a large part of the
efficiency advantage in the process, so have recently
revised the memory management mechanism and
are looking for other candidates for optimization.

Longer-term goals include to explore new ideas:
e.g., virtual objects and component-based program-
ming, and expanding the scope of existing ones like
formula-based interfaces. Further, we wish to get a
handle on a general approach to graphical user in-
terfaces (preferably with cross-platform portability),
and to develop better 3-D and dynamic graphics.

Thanks

R would not be what it is today without the invalu-
able help of these people, who contributed by donat-
ing code, bug fixes and documentation:

Valerio Aimale, Thomas Baier, Ben Bol-
ker, Göran Broström, Saikat DebRoy,
Lyndon Drake, Paul Gilbert, Robert
King, Kjetil Kjernsmo, Philippe Lambert,
Jim Lindsey, Patrick Lindsey, Catherine
Loader, Gordon Maclean, John Maindon-
ald, Duncan Murdoch, Jens Oehlschlägel-
Akiyoshi, Steve Oncley, Richard O’Keefe,

R News ISSN 1609-3631

Vol. 1/1, January 2001 3

Hubert Palme, Jose C. Pinheiro, Mar-
tyn Plummer, Jonathan Rougier, Heiner
Schwarte, Bill Simpson, Adrian Trapletti,
Terry Therneau, Bill Venables, Gregory R.
Warnes and Andreas Weingessel.

We have probably omitted some important
names here because of incomplete record keeping.

If we have overlooked you, please let us know and
we’ll update the list. Many more, too numerous to
mention here, have contributed by sending bug re-
ports and suggesting various improvements.

A special debt is owed to John Chambers who has
graciously contributed advice and encouragement in
the early days of R and later became a member of the
core team.

R Resources
by the R Core Team

Frequently Asked Questions

A collection of Frequently Asked Questions (FAQs)
and their answers is maintained by Kurt Hornik and
can be found at the URL http://www.ci.tuwien.
ac.at/~hornik/R/R-FAQ.html.

A text version is in file ‘FAQ’ in the top direc-
tory of the R sources, and an HTML version is avail-
able via the on-line help (on the index page given by
help.start()).

Archives

The Comprehensive R Archive Network (CRAN) is a
collection of sites which carry identical material, con-
sisting of the R distribution(s), the contributed exten-
sions, documentation for R, and binaries.

The CRAN master site (in Vienna, Austria) can be
found at the URLs

http://cran.r-project.org/
ftp://cran.r-project.org/pub/R/

and is mirrored daily at many sites: see the list at
http://cran.r-project.org/mirrors.html.

Mailing Lists

Thanks to Martin Maechler there are number of mail-
ing lists which are used by R users and developers.
They are

r-announce@lists.r-project.org:
announcements of new R releases or applica-
tions.

r-help@lists.r-project.org:
general inquiries and discussion about R.

r-devel@lists.r-project.org:
discussions about the future of R and pre-
testing of new versions.

To subscribe (or unsubscribe) to these mailing list
send ‘subscribe’ (or ‘unsubscribe’) in the body of
the message (not in the subject!) to

r-announce-request@lists.r-project.org
r-help-request@lists.r-project.org
r-devel-request@lists.r-project.org

Browsable archives of the mailing lists can be
found at http://www.r-project.org/. Text files (in
Unix mail folder format) of the archives are made
available monthly; see the ‘doc/mail/mail.html’ file on
any CRAN node.

Bug-tracking System

R has a bug-tracking system (or perhaps a bug-filing
system is a more precise description) available on the
net at

http://bugs.r-project.org/

and via e-mail to r-bugs@r-project.org. The R
function bug.report() can be used to invoke an ed-
itor from within an R session and send the report to
the right address. It also fills in some basic informa-
tion, such as your R version and operating system,
which has proved helpful in the debugging process.

The source distribution has a file ‘BUGS’ at the
top level giving a summary of the entries at the time
the R distribution was prepared.

R News ISSN 1609-3631

http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
http://cran.r-project.org/
ftp://cran.r-project.org/pub/R/
http://cran.r-project.org/mirrors.html
mailto:r-announce@lists.r-project.org
mailto:r-help@lists.r-project.org
mailto:r-devel@lists.r-project.org
mailto:r-announce-request@lists.r-project.org
mailto:r-help-request@lists.r-project.org
mailto:r-devel-request@lists.r-project.org
http://www.r-project.org/
http://bugs.r-project.org/
mailto:r-bugs@r-project.org

Vol. 1/1, January 2001 4

Changes in R
by the R Core Team

New features in version 1.2.1

• Package mva has new functions factanal(),
varimax(), promax(), and examples.

• New functions readBin() and writeBin() to
transfer binary data to and from connections.

• merge() is partially moved to C to reduce its
memory usage.

• library(help = PKG) now displays the con-
tents of the package’s ‘DESCRIPTION’ file in
addition to its ‘INDEX’.

• Sd2Rd can handle S4-style documentation too:
see “Writing R Extensions”.

• prompt() now also works with a character ar-
gument (useful for producing many ‘*.Rd’ files
in a loop).

• The Unix front-end shell script now ignores a
value for R_HOME found in the environment.

• Connections functions such as file() now ac-
cept a description of length > 1, with a warn-
ing.

• All text-mode connections now accept input
with LF, CR or CRLF line endings. This means
that readLines() can be used on DOS files and
source() on Mac files, for example.

Also, CRLF-terminated files can be used as
stdin on Unix, and files with last lines with-
out an EOL mark can be used as stdin and
source()-ed on Unix and Windows.

• ‘DESCRIPTION’ file has a new recommended
‘Maintainer:’ field.

• stars() now uses a larger ‘cex’ for the labels,
and ‘cex’ and ‘lwd’ are now arguments. Fur-
ther, the argument names (xlim, ylim, axes) are
now consistent with other plot functions. The
key symbol is not clipped anymore into the plot
region by default.

• Date-time quantities are now printed with the
timezone, if known.

• R CMD build now ignores all files specified (via
Perl regexps) in file ‘.Rbuildignore’ in the top-
level source directory of a package.

• Horizontal boxplots are possible with ‘horizon-
tal = TRUE’.

• all.equal() on lists now compares them as
generic vectors, that is they are equal if have
identical names attributes and all components
are equal.

• Invalid lines in ‘.Renviron’ now give warnings
when R is started.

• Argument ‘na.last’ implemented for rank().

New features in version 1.2.0

• There is a new memory management system
using a generational garbage collector. This
improves performance, sometimes marginally
but sometimes by double or more. The
workspace is no longer statically sized and
both the vector heap and the number of nodes
can grow as needed. (They can shrink again,
but never below the initially allocated sizes.)
See ?Memory for a longer description, including
the new command-line options to manage the
settings.

• values of ‘--min-nsize’ up to 50M (2Gb on 64-
bit Solaris) are allowed.

• A (preliminary) version of S4-like connections
has been added, and most functions which take
a ‘file’ argument can now work with a connec-
tion as well as a file name. For more details,
see the chapter on Connections in the “R Data
Import/Export” manual.

• New command-line option ‘--no-restore-
history’ implied by ‘--vanilla’.

• Command-line option ‘--no-restore’ is now
‘--no-restore-data’ and ‘--no-restore’ im-
plies ‘--no-restore-*’ (currently ‘data’ and
‘history’).

• The more recent GNU regex from grep-2.4.2
is used. This uses locale-based ordering for
ranges on platforms with strcoll.

• The print routines now escape ‘"’ (as ‘\"’)
in a character string only when it is printed
as a quoted string. This makes print(,
quote=FALSE) and cat() consistent.

• The standard methods for add1() and drop1()
now attempt to cope with missing values by
using a subset of the data that is “cleaned” by
na.action for the maximal model under con-
sideration.

R News ISSN 1609-3631

Vol. 1/1, January 2001 5

• anova() for 3 or more lm objects now behaves
compatibly with S and anova.glmlist(). The
old behaviour is still available by calling
anovalist.lm() directly.

• anova() for multiple lm and glm objects no
longer truncates the formula printed. There
is much more extensive documentation for
anova() methods.

• New method as.data.frame.table() for con-
verting the array-based representation of a
contingency table to a data frame containing
the classifying factors and the corresponding
counts.

• New function assocplot() for producing
Cohen-Friendly association plots.

• autoload() accepts ‘lib.loc’ and other argu-
ments to library().

• bxp() has new argument ‘frame.plot’, as
plot.default().

• contour() now has ‘axes’ and ‘frame.plot’
args.

• contrasts(, FALSE) now always returns an
identity matrix, to make model.matrix com-
patible with S. This affects models such as lm(y
~ o - 1) where o is an ordered factor.

• ‘where’ command added to debug().

• demo(dynload) (which used the superseded
call_R interface) has been removed.

• Class "dendrogram" in package mva providing
general support for tree-like structures (plot-
ting, cutting, . . .).

• dev.copy2eps() and dev2bitmap() preserve
the aspect ratio of the copied device if just one
of ‘width’ and ‘height’ is specified.

• dump() has new argument ‘append’, argument
‘fileout’ has been renamed to ‘file’ (for consis-
tency with all other functions).

• edit.default() now checks for an unset ‘edi-
tor’ argument, and terminates with an error if
the editor cannot be run.

• The ‘mode’ argument of exists() and get() is
interpreted as mode(x) rather than typeof(x),
following S.

• New functions file.access() and
file.info() for information on files on the
user’s file systems.

• New convenience function file.copy().

• file.show() allows ‘pager’ argument to be an
R function, and consequently, the ‘pager’ op-
tion can be an R function.

• Formatting (and printing) of data.frames with
complex objects is improved. toString() was
added as a new function.

• format() has a new argument ‘justify’ control-
ling the justification of character strings (and
factors).

• Formula objects now have an environment and
code manipulating them needs to take care to
preserve it or set an appropriate environment.

• New function fourfoldplot() for producing
fourfold displays of 2 by 2 by k contingency ta-
bles.

• gc() now reports the space allocated, not the
space free, since the total space is now variable.

• New primitive gc.time() to report on time
spent in garbage collection.

• hclust() takes new argument ‘members’ al-
lowing dissimilarity matrices both for single-
tons (as until now) and clusters.

• help() has an additional ‘pager’ argument
which may be passed to file.show() (useful
for ESS fans).

• There is now an R ‘Hershey’ list object for Her-
shey vector font computations and documenta-
tion.

• hist() now returns an object of class
"histogram" and calls the new function
plot.histogram() for plotting. It now also
allows character labels.

• if(*) now gives a more intelligible error mes-
sage when ‘*’ cannot be coerced to logical.

• inherits() is now an internal function and
compatible with S.

• New function lag.plot() in package ts.

• legend() has a new argument ‘pt.bg’.

• The commands history can be loaded with
loadhistory(), saved with savehistory()
and displayed with history(), under Win-
dows and under Unix using the readline or
GNOME interfaces.

• mad() has new (logical) arguments ‘low’ and
‘high’ (the first giving S compatibility).

• New function manova() and summary method.

R News ISSN 1609-3631

Vol. 1/1, January 2001 6

• Function mantelhaen.test() in package ctest
now can deal with general I × J × K tables. In
addition, in the 2× 2× K case, it can also per-
form an exact conditional test of independence,
and gives confidence intervals for the common
odds ratio.

• model.frame() now uses the environment of
its formula argument, rather than the parent
environment, to evaluate variables not found
in the data argument. See help(formula).

• mosaicplot() can now also create extended
mosaic plots, which visualize the residuals
from a log-linear model using color and out-
line.

• New utility function n2mfrow().

• nlm(check.analyticals = TRUE) now warns
if the supplied gradient and/or hessian are of
the wrong length.

• New function object.size() to give approxi-
mate memory allocation.

• optim() now checks the length of an analytical
gradient at each evaluation.

• The L-BFGS-B method of optim() now support
tracing, at several levels of detail.

• options(check.bounds = TRUE) makes each
vector extension by sub-assignment produce a
warning.

• options(width) now admits to a limit (previ-
ously 200, now 10000) and gives a more infor-
mative message if out of range (as it does now
for digits and expressions).

• Function path.expand() to do tilde-expansion
on file paths. This provides an interface
to R_ExpandFileName, which is now a docu-
mented entry point.

• .Platform has new component endian, useful
for binary file manipulations.

• plot.function() and curve() now take xlim
as default for (from,to) if the former is speci-
fied.

• plot.hclust() allows arguments ‘main’, ‘sub’,
etc., and has non-empty defaults for these.

• plot.ts(x,y) now allows to suppress labels
and lines; it is better documented.

• The postscript() driver now allows a user-
specified family so, for example, one can use
the same fonts in diagrams as in running text.

• The postscript() driver allows its prolog
to be changed (by an expert) via object
.ps.prolog.

• prop.table() and margin.table() now work
with an empty ‘margin’.

• Formerly deprecated function provide() is
now defunct.

• New functions read.delim()/read.delim2()
to make it easier to read delimited files as Win-
dows programs tend to create (usually TAB
separated).

• New readLines() function to read a file line-
by-line.

• New functions reshapeLong() and re-
shapeWide() emulating Stata’s reshape com-
mand. These are still labeled experimental and
might be improved (or removed) in later ver-
sions.

• row.names() and row.names<-() are now
generic functions which call rownames() as
their default method and have methods for
class "data.frame".

• New function Rprof() for profiling R expres-
sions under Unix. Configure with ‘--enable-
R-profiling’ (on by default) to make this op-
erational.

• save(, oldstyle=TRUE) has been withdrawn.

• scan() and read.table() have a new argu-
ment ‘fill’ which can be set TRUE to allow read-
ing files with unequal number of fields per line.
(Programs like Excel have a habit of creating
such files when exporting.)

• scan() and read.table() have a new argu-
ment ‘blank.lines.skip’ to allow blank lines to
be read.

• scan() now reads empty character fields as ""
not "NA" unless "" is included in na.strings.

• smooth() in package eda has a better default
(3RS3R instead of 3RSR) and more arguments,
e.g., ‘twiceit’ for some S compatibility and
‘kind = "3R"’ for running medians of 3.

• strsplit() has a new argument ‘extended’
controlling whether to use extended (the de-
fault) or basic regular expressions for splitting.

• Sys.getenv() becomes the preferred name for
getenv(), which is now deprecated.

• New functions Sys.getlocale() and
Sys.setlocale() to query and set as-
pects of the locale of the R process, and
Sys.localeconv() to find the default decimal
point, etc.

R News ISSN 1609-3631

Vol. 1/1, January 2001 7

• New function Sys.info() for platform, host
and user information.

• New function Sys.putenv() to set environ-
ment variables.

• New function Sys.sleep() to suspend execu-
tion for a while.

• Date-time support functions with classes
"POSIXct" and "POSIXlt" to represent dates
and times (resolution 1 second) in the POSIX
formats. Functions include Sys.time(),
as.POSIXct(), strftime(), strptime(), and
methods for format, plot, c, There are
conversion functions for objects from packages
date and chron; unlike those packages these
support functions know about time zones (if
the OS does).

• tcltk package now has tkpager() which is de-
signed to be used by file.show() and shows
help pages etc. in separate text widgets.

• tcltk is now more careful about removing
the objects representing widgets in the R
workspace when the windows are destroyed
(e.g., using window manager controls)

• tcltk package has had several canvas functions
implemented.

• tcltk now wraps callbacks to R in a try()
construct—the nonlocal return from R’s error
handling could bring the Tk system into a
strange state.

• New demos for tcltk: tkfaq, tkfilefind, tkcan-
vas.

• termplot() now has an ‘ask’ argument.

• terms() creates objects which now in-
herit from class "formula", so for example
as.formula(terms.object) needs to be re-
placed by formula(terms.object).

• traceback() is now printed un-quoted and la-
belled by the frame number.

• New argument ‘recursive’ to unlink(). The
default behaviour on Unix is now that of rm -f,
not rm -rf. unlink() is now compatible across
platforms.

• New functions write.ftable() and
read.ftable() for writing out and reading in
flat contingency tables.

• write.table() now quotes factor columns
if ‘quote=TRUE’, and has a new argument
‘qmethod’ to control the escaping of embedded
quotes in character or factor columns.

• New function xtabs() providing a formula in-
terface to cross tabulation.

• The “R Data Import/Export” (‘R-data.texi’) man-
ual has been added.

• The set of valid R names is now described (at
last) in R-intro.

• The “R Language Definition” (‘R-lang.texi’) man-
ual is now included and built in the same way
as the other manuals.

• The R manuals (R-intro, R-exts, . . .) are con-
verted to HTML format (if the necessary Tex-
info tools are available) and linked into the top
HTML help page.

• The header file ‘R.h’ and those included from it
are now usable with C++ code.

• New header file ‘R ext/Boolean.h’: Rboolean
type with TRUE and FALSE enum constants.

• New header file ‘Rgraphics.h’ to allow addons
to use graphics structures.

• Recommended include file ‘Rmath.h’ replaces
‘R ext/Mathlib.h’.

• Bessel, beta and gamma functions are now doc-
umented as part of the API. Undocumented en-
try points are no longer in the header files, and
some are no longer visible.

• Calloc and Realloc failures now give size in-
formation.

• ‘DESCRIPTION’ file in installed packages has a
new ‘Built:’ field giving build information (R
version, platform, date).

• Much improved support for C++ code in add-
on packages under Unix. New configure/build
variables SHLIB_CXXLD and SHLIB_CXXLDFLAGS
for specifying the command and flags needed
for building shared libraries containing objects
from a C++ compiler. Configure tries to get
these right in typical cases (GNU tools and/or
common platforms). C++ source suffixes ‘.cpp’
and ‘.C’ are now recognized in addition to ‘.cc’.

• Configure/build variables MAINLD and
MAINLDFLAGS are renamed to MAIN_LD and
MAIN_LDFLAGS for consistency with other
MAIN_* variables, similarly for SHLIBLD and
SHLIBLDFLAGS.

• Configure/build variable FLIBS now only con-
tains the FORTRAN 77 intrinsic and run-time
libraries needed for linking a FORTRAN 77
program or shared library (as determined by
configure). BLAS library detection was ex-
tended, with results saved to the Make vari-
able BLAS_LIBS which is also available to add-
on packages.

R News ISSN 1609-3631

Vol. 1/1, January 2001 8

• R CMD build and check have been completely
re-written in Perl. In addition to running ex-
amples, check now also checks the directory
structure and control files, makes a temporary
installation and runs LATEX on the help pages.
build has been reduced to cleaning, rewriting
indices and creating tar files.
The same files of Perl code are now also used
under Windows.

• Add-ons for utilities like Perl or LATEX have now

a central place in ‘$R HOME/share’. Migration
of existing files might take a while, though.

• Preliminary support for building R as a shared
library (‘libR’) under Unix. Use configure with
option ‘--enable-R-shlib’ or do make libR in
directory ‘src/main’ to create the shared library.

There is also a linker front-end R CMD LINK
which is useful for creating executable pro-
grams linked against the R shared library.

Changes on CRAN
by Kurt Hornik and Friedrich Leisch

Introduction

This column, named Changes on CRAN, will be one
of the regular columns appearing in every volume of
the newsletter. We will try to shortly summarize all
changes on CRAN and the R web pages, list new or
updated extension packages, new manuals, etc.

Split of CRAN and R homepage

During the second half of 2000 we have split up R’s
web pages into two seperate web sites:

http://www.r-project.org/
http://cran.r-project.org/

The first is meant as R’s central homepage, giving in-
formation on the R project and everything related to
it. The second—CRAN—acts as the download area,
carrying the software itself, extension packages, PDF
manuals; in short everything you may need to down-
load for using R.

The main motivations for this “artificial” split
were:

• CRAN is mirrored on a number of sites world-
wide, hence we should try to keep it as small as
possible to make life for the mirror sites easier.
It should carry the material users of R need to
download on a regular basis, such that having
a mirror nearby pays off.

• We do not want to be (technically) limited in
the possibilities how to present material on the
homepage of R. However, a site like CRAN that
is intended for other sites to mirror is very lim-
ited, because the administrators have no con-
trol of the mirror web servers. Hence, not even

the simplest CGI scripts are possible, every-
thing has to be hardcoded into physically ex-
isting HTML files.

Both sites are closely linked to each other, and
we try to avoid duplicating information in as much
as possible. In fact, http://www.r-project.org/
and http://cran.r-project.org/ are aliases for
the same machine.

New CRAN mirrors

Laszlo Tornoci of the Semmelweis University Medi-
cal School in Budapest has set up a CRAN mirror for
Hungary. Daniele Medri, with the Economics Fac-
ulty of University of Bologna, is working on setting
up an Italian mirror.

Thus far, CRAN mirrors only exist in Europe and
North America. In the interest of preserving band-
width, we would like to add mirrors in other con-
tinents as well. Please contact wwwadmin@cran.r-
project.org of you are interested in providing a
new CRAN country mirror.

CRAN packages

CRAN contains R extension packages in four loca-
tion:

‘src/contrib’: The main location containing packages
that pass R CMD check at least on one plat-
form1.

‘src/contrib/Devel’: Packages that are under devel-
opment, incomplete, do not pass R CMD check
or where the authors think they are not ready
for the main section.

1Debian GNU/Linux, the platform CRAN itself runs on and is used by the CRAN maintainers. The reason is a simple and practical
one: before installing a package on CRAN we check it . . .

R News ISSN 1609-3631

http://www.r-project.org/
http://cran.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/
mailto:wwwadmin@cran.r-project.org
mailto:wwwadmin@cran.r-project.org

Vol. 1/1, January 2001 9

‘src/contrib/Omegahat’: Packages from the Omega-
hat project, see the article by John Chambers
and Duncan Temple Lang on “Omegahat Pack-
ages for R”.

‘contrib/extra’: Packages that run only on a limited
number of platform, e.g., because they are only
available in binary format or depend on other
software which is not free.

This section will list new or updated extension
packages in ‘src/contrib’ since the last newsletter. Of
course this is hard in the first volume, hence we de-
cided to list all new packages since the release of R
1.1.0, which basically covers the second half of 2000:

Matrix A Matrix package for R, by Douglas Bates
and Saikat DebRoy

PHYLOGR Functions for phylogenetically-based
statistical analyses, by Ramón Díaz-Uriarte and
Theodore Garland, Jr.

RODBC ODBC support and a back end database, by
Michael Lapsley

RPgSQL PostgreSQL access, by Timothy H. Keitt

Rstreams Binary file stream support functions, by B.
D. Ripley and Duncan Murdoch

XML XML parsing tools for R and S, by Duncan
Temple Lang

conf.design Construction of factorial designs, by
Bill Venables

dse Multivariate time series library, by Paul Gilbert

ellipse library ellipse for drawing ellipses and
ellipse-like confidence regions, by Duncan
Murdoch and E. D. Chow (porting to R by Jesus
M. Frias Celayeta)

exactRankTests Exact distributions for rank tests, by
Torsten Hothorn

foreign Read data stored by Minitab, SAS, SPSS,
Stata, . . . , by Thomas Lumley, Saikat DebRoy
and Douglas M. Bates

gafit Genetic algorithm for curve fitting, by Telford
Tendys

gld Basic functions for the generalised (Tukey)
lambda distribution, by Robert King

maptree Mapping and graphing tree models, by De-
nis White

mgcv Multiple smoothing parameter estimation and
GAMs by GCV, by Simon Wood

muhaz Hazard function estimation in survival anal-
ysis, S original by Kenneth Hess, R port by
Robert Gentleman

mvnmle ML estimation for multivariate normal
data with missing values, by Kevin Gross

mvtnorm Multivariate normal and t distributions,
by Alan Genz and Frank Bretz, R port by
Torsten Hothorn

scatterplot3d 3D scatter plot, by Uwe Ligges

sn The skew-normal distribution, by Adelchi Azza-
lini

splancs Spatial and space-time point pattern anal-
ysis, by Barry Rowlingson and Peter Diggle,
adapted and packaged for R by Roger Bivand

tensor Tensor product of arrays, by Jonathan
Rougier

wle Weighted likelihood estimation, by Claudio
Agostinelli

xtable Export tables, by David Dahl

New Linux packages

The ‘bin/linux’ subdirectory of every CRAN site now
also contains Mandrake 7.2 i386 packages by Michele
Alzetta. In addition, RedHat 7.0 packages for the
alpha and i386 platforms and SuSE 7.0 i386 pack-
ages were added. These packages are maintained by
Naoki Takebayashi, Martyn Plummer, and Albrecht
Gebhardt, respectively.

The Debian GNU/Linux packages can now be
accessed through APT, the Debian package mainte-
nance tool. After adding the line

deb \

http://cran.r-project.org/bin/linux/debian \

distribution main

(where distribution is either ‘stable’ or ‘unstable’;
feel free to use a CRAN mirror instead of the mas-
ter) to the file ‘/etc/apt/sources.list’, the programs
apt-get, apt-cache, and dselect (using the apt ac-
cess method) will automatically detect and install
updates of the R packages.

Kurt Hornik
Technische Universität Wien, Austria
Kurt.Hornik@ci.tuwien.ac.at

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

R News ISSN 1609-3631

mailto:Kurt.Hornik@ci.tuwien.ac.at
mailto:Friedrich.Leisch@ci.tuwien.ac.at

Vol. 1/1, January 2001 10

Under New Memory Management
by Luke Tierney

R 1.2 contains a new memory management sys-
tem based on a generational garbage collector. This
improves performance, sometimes only marginally
but sometimes by a factor of two or more. The
workspace is no longer statically sized and both the
vector heap and the number of nodes can grow as
needed. They can shrink again, but never below the
initially allocated sizes.

Generational Garbage Collection

Garbage collection is the colorful name usually used
for the process of reclaiming unused memory in a
dynamic memory management system. Many algo-
rithms are available; a recent reference is Jones and
Lins (1996). A simple garbage collection system
works something like this: The system starts with
a given amount of heap memory. As requests for
chunks of memory come in, bits of the heap are allo-
cated. This continues until the heap is used up. Now
the system examines all its variables and data struc-
tures to determine which bits of allocated memory
are still in use. Anything that is no longer in use is
garbage (hence the name) and can be reclaimed for
satisfying the next set of allocation requests.

The most costly step in this process is determin-
ing the memory still in use. Generational collection,
also called ephemeral collection, is designed to speed
up this process. It is based on the observation that
there tend to be two kinds of allocated objects. Ob-
jects representing built-in functions or library func-
tions and objects representing data sets being ana-
lyzed tend to be needed for long periods of time and
are therefore present at many successive collections.
Intermediate results of computations, on the other
hand, tend to be very short lived and often are only
needed for one or two collections.

A generational collector takes advantage of this
observation by arranging to examine recently allo-
cated objects more frequently than older objects. Ob-
jects are marked as belonging to one of three gen-
erations. When an object is initially allocated, it is
placed in the youngest generation. When a collec-
tion is required, the youngest generation is examined
first. Objects still in use are moved to the second gen-
eration, and ones no longer in use are recycled. If this
produces enough recycled objects, as it usually will,
then no further collection is needed. If not enough re-
cycled objects are produced, the second generation is
collected. Once again, surviving objects are moved to
the next, the final, generation, and objects no longer
in use are recycled. On very rare occasions even this
will not be enough and a collection of the final gener-
ation is needed. However for most collections exam-

ining the youngest generation is sufficient, and col-
lections of the youngest generation tend to be very
fast. This is the source of the performance improve-
ment brought about by the generational collector.

Limiting Heap Size

Since the size of the R workspace is adjusted at run-
time, it is no longer necessary to specify a fixed
workspace size at startup. However, it may be use-
ful to specify a limit on the heap size as a precaution
in settings where attempting to allocate very large
amounts of memory could adversely affect other
users or the performance of the operating system.

Many operating systems provide a mechanism
for limiting the amount of memory a process can use.
Unix and Linux systems have the limit and ulimit
commands for csh and sh shells, respectively. The
Windows version of R also allows the maximal total
memory allocation of R to be set with the command
line option ‘--max-mem-size’. This is analogous to
using the limit command on a Unix system.

For somewhat finer control R also includes com-
mand line arguments ‘--max-nsize’ and ‘--max-
vsize’ for specifying limits at startup and a function
mem.limits for setting and finding the limits at run-
time. These facilities are described in more detail in
?Memory.

If R hits one of these limits it will raise an error
and return to the R top level, thus aborting the calcu-
lation that hit the limit. One possible extension cur-
rently under consideration is a more sophisticated er-
ror handling mechanism that might allow the option
of asking the user with a dialog whether the heap
limits should be raised; if the user agrees, then the
current calculation would be allowed to continue.

API Changes

Implementing the generational collector required
some changes in the C level API for accessing and
modifying internal R data structures.

For the generational collector to work it has to be
possible to determine which objects in the youngest
generations are still alive without examining the
older generations. An assignment of a new object to
an old environment creates a problem. To deal with
this problem, we need to use a write barrier, a mech-
anism for examining all assignments and recording
any references from old objects to new ones. To in-
sure accurate recording of any such references, all as-
signments of pointers into R objects must go through
special assignment functions. To allow the correct
use of these assignment functions to be checked re-
liably by the C compiler, it was necessary to also
require that all reading of pointer fields go through

R News ISSN 1609-3631

Vol. 1/1, January 2001 11

special accessor functions or macros. For example, to
access element i of vector x you need to use

VECTOR_ELT(x, i)

and for assigning a new value v to this element you
would use

SET_VECTOR_ELT(x, i, v)

These API changes are the main reason that pack-
ages need to be recompiled for 1.2. Further details
on the current API are available in “Writing R Exten-
sions”.

Future Developments

There are many heuristics used in the garbage col-
lection system, both for determining when different
generations are collected and when the size of the
heap should be adjusted. The current heuristics seem
to work quite well, but as we gain further experi-
ence with the collector we may be able to improve
the heuristics further.

One area actively being pursued by the R core
team is interfacing R to other systems. Many of these

systems have their own memory management sys-
tems that need to cooperate with the R garbage col-
lector. The basic tools for this cooperation are a final-
ization mechanism and weak references. A prelimi-
nary implementation of a finalization mechanism for
use at the C level is already part of the collector in
R 1.2. This will most likely be augmented with a
weak reference mechanism along the lines described
by Peyton Jones, Marlow and Elliott (1999).

References

Richard Jones and Rafael Lins (1996). Garbage Collec-
tion. Wiley. 10

Simon Peyton Jones, Simon Marlow, and Conal
Elliott (1999). Stretching the storage man-
ager: weak pointers and stable names in
Haskell. http://www.research.microsoft.com/
Users/simonpj/Papers/papers.html. 11

Luke Tierney
University of Minnesota, U.S.A.
luke@stat.umn.edu

On Exact Rank Tests in R
by Torsten Hothorn

Linear rank test are of special interest in many fields
of statistics. Probably the most popular ones are the
Wilcoxon test, the Ansari-Bradley test and the Me-
dian test, therefore all implemented in the standard
package ctest. The distribution of their test statistics
under the appropriate hypothesis is needed for the
computation of P-values or critical regions. The al-
gorithms currently implemented in R are able to deal
with untied samples only. In the presence of ties an
approximation is used. Especially in the situation of
small and tied samples, where the exact P-value may
differ seriously from the approximated one, a gap is
to be filled.

The derivation of algorithms for the exact distri-
bution of rank tests has been discussed by several au-
thors in the past 30 years. A popular algorithm is the
so called network algorithm, introduced by Mehta
and Patel (1983). Another smart and powerful algo-
rithm is the shift algorithm by Streitberg and Röhmel
(1986). In this article, we will discuss the package ex-
actRankTests, which implements the shift algorithm.
The computation of exact P-values and quantiles for
many rank statistics is now possible within R.

Using ExactRankTests

The algorithm implemented in package exactRank-
Tests is able to deal with statistics of the form

T =
m

∑
i=1

ai

where a = (a1, . . . , aN) are positive, integer valued
scores assigned to N observations. We are interested
in the distribution of T under the hypothesis that all
permutations of the scores a are equally likely. Many
rank test can be regarded this way, e.g. the Wilcoxon
test is a special case with ai = i and the Ansari-
Bradley test has scores ai = min(i, N− i + 1). For de-
tails about the algorithm we point to the original ar-
ticles, for example Streitberg and Röhmel (1986) and
Streitberg and Röhmel (1987).

Package exactRankTests implements the func-
tions dperm, pperm, and qperm. As it is standard in
R/S they give the density, the probability function
and the quantile function. Additionally, the function
pperm2 computes two-sided P-values. Consider e.g.
the situation of the Wilcoxon test. Let x and y denote
two vectors of data, possibly tied. First, we compute
the ranks over all observations and second we com-
pute the Wilcoxon statistic, which is the sum over the
ranks of the x sample.

R> ranks <- rank(c(x,y))

R News ISSN 1609-3631

http://www.research.microsoft.com/Users/simonpj/Papers/papers.html
http://www.research.microsoft.com/Users/simonpj/Papers/papers.html
mailto:luke@stat.umn.edu

Vol. 1/1, January 2001 12

R> W <- sum(ranks[seq(along=x)])

R> pperm(W, ranks, length(x))

The one-sided P-value is computed in the last line
of the example. In the absence of ties the results of
[pq]perm and [pq]wilcox are equal. An exact ver-
sion of wilcox.test is provided as wilcox.exact.
The following example is taken from Mehta and Pa-
tel (1998). The diastolic blood pressure (mmHg) was
measured on 11 subjects in a control group and 4 sub-
jects in a treatment group. First, we perform the one-
sided Wilcoxon rank sum test.

R> treat <- c(94, 108, 110, 90)

R> contr <- c(80, 94, 85, 90, 90, 90,

108, 94, 78, 105, 88)

R> wilcox.exact(contr, treat,

alternative = "less")

Exact Wilcoxon rank sum test

data: contr and treat

W = 9, point prob = 0.019, p-value = 0.05421

alternative hypothesis: true mu is less than 0

The one-sided P-value is 0.05421 which coincides
with the P-value of 0.0542 given in Mehta and Patel
(1998). Additionally, the probability of observing the
test statistic itself is reported as point prob.

Usually, the distribution is not symmetric in the
presence of ties. Therefore the two-sided P-values
need additional effort. StatXact computes the two-
sided P-value as 0.0989 and wilcox.exact returns:

R> wilcox.exact(contr, treat)

Exact Wilcoxon rank sum test

data: contr and treat

W = 9, point prob = 0.019, p-value = 0.0989

alternative hypothesis: true mu is not equal to 0

Real or rational scores

The original algorithm is defined for positive, inte-
ger valued scores only. Streitberg and Röhmel (1987)
suggested to approximate the distribution of a statis-
tic based on real or rational scores by taking the in-
teger part of the appropriately multiplied scores. A
bound for the maximal possible error on the quan-
tile scale can be derived (see the documentation of
[dpq]perm for more details). As an example, we
want to calculate the critical value for a two-sided
van der Waerden test for samples of 10 untied obser-
vations each and a significance level ofα = 0.05:

R> abs(qperm(0.025, qnorm(1:20/21), 10))

[1] 3.872778

By default, the tolerance limit is set to tol=0.01
which means that the computed quantiles does not
differ more than 0.01 from the true ones. Due to
memory limitations, it might not be possible to cal-
culate a quantile in such a way.

Another approach is to use integer scores with
the same shape as the original ones. This can be
achieved by mapping the real or rational scores into
{1, . . . , N}. The idea behind is that one is not inter-
ested in approximating the quantiles but to have a
test with the same properties as the original one. Ad-
ditionally, the computational effort is the same as for
the Wilcoxon test. This procedure was suggested by
my colleague Berthold Lausen during a discussion
about the shift algorithm. The two-sided P-value for
the van der Waerden test of two samples x and y is
now computed as follows:

R> N <- length(c(x,y))

R> sc <- qnorm(rank(c(x,y))/(N+1))

R> sc <- sc - min(sc)

R> sc <- round(sc*N/max(sc))

R> X <- sum(sc[seq(along=x)])

R> p <- pperm2(X, sc, length(x))

Conclusion

Using the newly introduced package exactRank-
Tests, R users are able to compute exact P-values or
quantiles of linear rank tests based on the Streitberg-
Röhmel shift algorithm. The use the the proce-
dures [dpq]perm is illustrated by many examples in
the help files. Additionally, a modified version of
wilcox.test using the exact procedures is provided
as wilcox.exact. The performance of [dpq]perm is
not as good as that of [pq]wilcox but should be suf-
ficient for most applications.

References

Cyrus R. Mehta and Nitin R. Patel. A network al-
gorithm for performing fisher’s exact test in r× c
contingency tables. Journal of the American Statisti-
cal Association, 78(382):427–434, June 1983. 11

Cyrus R. Mehta and R. Patel, Nitin. StatXact-4 for
Windows. Cytel Software Cooperation, Cambridge,
USA, 1998. 12

Bernd Streitberg and Joachim Röhmel. Exact distri-
butions for permutations and rank tests: An in-
troduction to some recently published algorithms.
Statistical Software Newsletters, 12(1):10–17, 1986.
11

Bernd Streitberg and Joachim Röhmel. Exakte
Verteilungen für Rang- und Randomisierungstests
im allgemeinen c-Stichprobenfall. EDV in Medizin
und Biologie, 18(1):12–19, 1987. 11, 12

Torsten Hothorn
Friedrich-Alexander-Universität Erlangen-Nürnberg,
Germany
Torsten.Hothorn@rzmail.uni-erlangen.de

R News ISSN 1609-3631

mailto:Torsten.Hothorn@rzmail.uni-erlangen.de

Vol. 1/1, January 2001 13

Porting R to the Macintosh
by Stefano M. Iacus

In late July of last year, Ross Ihaka kindly gave me
the code he used to build version 0.64 of R on the
Macintosh while the current R release passed ver-
sion 1.0. So some of the newest code didn’t fit these
old sources and the Macintosh device needed also
an update due to the migration of MacOS towards
MacOS X. In any case, without that initial starting
point, there probably wouldn’t now be a beta release
of “R for Mac” 1.2.1 that is quite stable and equiva-
lent to different platform binaries.

What is the actual state of this port? Probably,
starting from one of the 1.2.x releases the Macintosh
code will be included in the standard distribution of
the sources as well as the binaries. The currently
available release of binaries and sources for MacOS
is 1.2.1 and can be found starting from the R Devel-
oper Page (http://developer.r-project.org/), as
to say, it is still a beta developer version.

What is implemented that was not in the past?
Actually, one of the most important things is the
support for dynamic libraries2 on which most of
the contributed packages are based. Also the XDR
save/load format has been implemented so that
Macintosh users can exchange ‘.RData’ session files
with other platforms having this ability (i.e., Win-
dows systems). Also temporary files, the help (man-
like) engine, and the file I/O routines needed for the
Postscript, PicTex and XFig devices work correctly.
Many minor bugs have been fixed and some further
functionality has been added like the metric informa-
tion technology to write mathematical expressions
on plots.

Environment variables actually do no exist un-
der MacOS systems as well as the shell. Much
functionality based on these two has been partially
suppressed, other such functions have been im-
plemented using system-level interactions with the
Finder (a sort of window manager under MacOS).
Some of the environment variables are stored in the
preference file of the R Application.

Luckily, the memory manager has changed in
version 1.2.0 of R and due to this fact the current re-
lease of R for MacOS ignores the size settings. The R
task can use as much memory as it likes till the mem-
ory space reserved to the application by the user is
full. The user simply needs to change memory pa-
rameters using a Finder/Information procedure as
she does for all other applications under MacOS.

What is it left to do? The Tcl support and interac-
tions with other applications are in the works. These

imply the interactions with Emacs-like editors and
the simulation of the system command under other
systems. One other important need for R for Macin-
tosh is the migration toward MacOS X. One first step
is to substitute completely all the former system’s
API with the new Carbon API provided by Apple.
This will allow a Macintosh machine with System 8.6
or greater to run applications either under the stan-
dard MacOS and under the new MasOS X.

MacOS X will soon be released by Apple. This
system can be viewed as a Unix-like environment
with a window manager that looks like the former
Macintosh Finder. Under MacOS X the environment
variables, different shells, Tcl/Tk support and many
other utilities are implemented.

One drawback of MacOS X is that it needs very
powerful and new-generation machines to run. The
temptation to simply recompile R sources for Unix
under MacOS X and to write a specific MacOSX de-
vice is always there but this will imply to abandon
most of the Macintosh users to their fate without R.

So, in my opinion, migration to MacOS X can be
implemented in two steps: the current one that sim-
ply tries to make R a native application both under
MacOS Systems ≤ 9.04 and MacOS X using the Car-
bon Support by Apple. At the same time taking care
for specific MacOS X facilities when available and
write a MacOSX device parallel to the current Mac-
intosh one. At least for one year or so this should
be a good strategy, then a complete abandon of pre-
MacOS X systems will be acceptable for the Macin-
tosh audience.

Currently Macintosh specific code is handled us-
ing #ifdef macintosh and the Macintosh driver is
simply implemented by the Macintosh() function.
A not so bad idea, could be to use #ifdef macosx
and MacOSX() respectively to take advantage of the
new MacOS X.

There is really a great need for R for the Macin-
tosh. Since the first public pre-alpha release of R 1.0,
I’ve received a lot of feedback from users. This feed-
back has been invaluable. I would like to thank par-
ticularly A. Antoniadis, R. Beer, G. Sawitzki and G.
Janacek among the others, and of course Luke, Mar-
tin, Kurt, Brian and Guido from the R Team helping
me with different hints, tips and tricks along with C-
code.

Stefano M. Iacus
Università degli Studi di Milano, Italy
stefano.iacus@unimi.it

2for dyn.loading compiled C or Fortran functionality

R News ISSN 1609-3631

http://developer.r-project.org/
mailto:stefano.iacus@unimi.it

Vol. 1/1, January 2001 14

The density of the non-central chi-squared
distribution for large values of the noncen-
trality parameter
by Peter Dalgaard

Introduction

On December 14th, 2000 Uffe Høgsbro Thygesen re-
ported on the R-help mailing list that the dchisq
function was acting up when being passed moder-
ately large values of the ncp= argument.

The code he used to demonstrate the effect was
essentially
testit <- function(mu) {

x <- rnorm(100000, mean=mu)^2

hist(x, breaks=100, freq=FALSE)

curve(dchisq(x, 1, mu^2), add=TRUE)

}

par(mfrow=c(2,1), mex=0.7)

testit(10)

testit(15)

This led to the display in figure 1. Further ex-
perimentation showed that the density was losing
mass visibly when mu was about 13 and deteriorat-
ing rapidly thereafter.

The definition of the non-central χ2 used in R is

f (x) = e−λ/2
∞

∑
i=0

(λ/2)i

i!
fn+2i(x) (1)

where fn is the density of the central χ2 on n degrees
of freedom. The coefficients to fn+2i(x) are the point
probabilities of the Poisson distribution with param-
eter λ/2.

Histogram of x

x

D
en

si
ty

50 100 150 2000.
00

0
0.

01
0

0.
02

0

Histogram of x

x

D
en

si
ty

150 200 250 300 350 4000.
00

0
0.

00
8

Figure 1: Demonstration of problem with old
code for non-central χ2. Top plot is for λ = 102,
bottom one is for λ = 152.

A look at the source code in ‘src/nmath/dnchisq.c’
quickly revealed the source of the problem:

double

dnchisq(double x, double df, double lambda,

int give_log)

{

const static int maxiter = 100;

...

In the code, maxiter gives the truncation point of
the infinite series in the definition. The author must
have thought that “100 iterations should be enough
for everyone”, but at λ = 225 the Poisson weights
will have their maximum for a value of i of approx-
imately 225/2 and the other part of the term is not
small either: The mean of a non-central χ2 distribu-
tion is n + λ, so fn+2i(x) with i ≈ λ/2 is not small for
relevant values of x. A quick display of the first 201
terms in the series can be obtained with the following
code leading to Figure 2

i <- 0:200

plot(dpois(i, 225/2) * dchisq(225, 1+2*i),

type=’h’)

0 50 100 150 200

0e
+

00
2e

−
04

4e
−

04
6e

−
04

Index

dp
oi

s(
i,

22
5/

2)
 *

 d
ch

is
q(

22
5,

 1
 +

 2
 *

 i)

Figure 2: Terms of the series expansion for λ =
225 and x = 225

Obviously, truncating the series at i = 100 is
not a good idea if one intends to be able to cover
even moderately large values of the noncentrality pa-
rameter. However, although increasing maxiter to
10000 removed the problem for the arguments in the
original report, the result was disappointing since it
turned out that the modified routine would give a
zero density already when mu was above 40. In what
follows, I shall show what causes this effect and how
to eliminate the problem.

R News ISSN 1609-3631

Vol. 1/1, January 2001 15

Recurrence relations

Coding the series expansion (1) as written would be
quite inefficient because of the large number of cal-
culations of (central) χ2 density values. Instead, one
makes use of the recurrence relation

fn+2 =
x
n

fn (2)

which is easily derived from the definition of the χ2

density

fn(x) =
1

2Γ(n/2)
(x/2)n/2−1e−x/2

Similarly, the point probabilities for the Poisson dis-
tribution satisfy

pi+1 =
λ

i + 1
pi (3)

Piecing (2) and (3) together one gets that if the terms
of (1) are denoted ai, then

ai+1 =
λx/2

(i + 1)(n + 2i)
ai (4)

The code for the dnchisq C routine used this relation
starting from

a0 = e−λ/2 fn(x)

However, when λ is large, this goes wrong because
the interesting values of x are on the order of λ and
fn(x) in the initial term will underflow the floating
point representation:

> dchisq(40^2,1)

[1] 0

In those cases, the recurrence never gets started, ai =
0 for all i.

Rearranging the recurrence

It is possible to get around the underflow problem by
using the give_log argument to the C dchisq func-
tion, but the fact remains that most of the terms in
the summation are effectively zero when λ is large.

It would be advantageous to calculate the sum-
mation “inside-out”, i.e., start in the middle of the
distribution of terms and proceed in both directions
until the terms are too small to make any difference.

It is easy to find the value of i that gives the largest
term by inspecting (4). The value of ai+1/ai will be
less than 1 as soon as

λx/2 < (i + 1)(2i + n) (5)

The right hand side is a second order expression in i
and one easily finds that the roots of (i + 1)(2i + n)−
λx/2 are

−(n + 2)±
√

(n− 2)2 + 4λx
4

(6)

and imax, the index of the maximum term is ob-
tained by rounding the largest root upwards, unless
that would result in a negative value in which case
imax = 0 is the answer.

So we can start from aimax and use the recurrence
relation (4) in both directions. Both when proceed-
ing upwards and downwards, we can use the error
bound obtained by dominating the series with a quo-
tient series, since the terms are positive and the ratio
between successive terms is decreasing in both direc-
tions. I.e. if the ratio of two successive terms is q (less
than 1) then we know that the sum of the remain-
der of the series will be less than ∑∞1 qn = q/(1− q)
times the current term and terminate the series if this
is smaller than some preset value.

Histogram of x

x

D
en

si
ty

9999500000 10000000000 10000500000

0.
0e

+
00

1.
0e

−
06

2.
0e

−
06

Figure 3: Result with new code for λ = 1000002

The new code has been tested with values of λ
as high as 1000002 with good results (Figure 3), al-
though it takes a while to complete for those values
since there are on the order of a few times 100000
terms that must be included in the sum. At such
high values of λ the noncentral χ2 can of course be
approximated extremely accurately by a Normal dis-
tribution.

Peter Dalgaard
University of Copenhagen, Denmark
P.Dalgaard@biostat.ku.dk

R News ISSN 1609-3631

mailto:P.Dalgaard@biostat.ku.dk

Vol. 1/1, January 2001 16

Connections
by Brian D. Ripley

Connections are a new concept in version 1.2.0 and
still in an embryonic state, with some more facilities
being made available in version 1.2.1. They are a far-
reaching replacement for file-oriented input/output.
They are modelled on the facilities introduced in S
version 4 and described in Chambers (1998) but are
likely to diverge away from that model as they be-
come more central to R.

Three recent enquiries to r-help illustrate why
one might want something more general than files.
David Firth wanted to grab the output from an R
function and send it via a socket to a machine in
London (in connection with election forecasting as
and when there comes a UK general election). He
was happy to grab the output to a character vec-
tor, check it and then send it using make.socket
and write.socket. Until version 1.2.0 the carefully
formatted output of the standard statistical analysis
functions could only be sent to the console or a file
via sink. Using output text connections, sink can now
‘trickle’ output to a character vector.

Peter Kleiweg had a dataset which was comma-
separated, but also had commas at the ends of lines.
That might be good for human readers, but is not the
format required by scan. My proffered solution was
to use a pipe connection to pre-process the data file
whilst it was being read into R, for example

zz <- pipe("sed -e s/,$// data")

res <- scan(zz, sep=",")

close(zz)

Erich Neuwirth wanted to remotely control R via
a socket. That is, a read-mode socket could be created
in an R session that would receive R expression as if
typed at the command line and process each expres-
sion as soon as it was completed. We cannot do ex-
actly that yet (although it was already planned), but
one could set up a pipe connection to an external pro-
gram (say fromsocket) to read from the socket and
use a loop containing something like

zz <- pipe("fromsocket socket.id", "r")

repeat {

read 1 expression

eval(parse(file=zz, n=1))

deal with other things here

if(some condition) break;

}

close(zz)

although of course one needs to take care of error
conditions, perhaps by using try.

The third example shows one of the main advan-
tages of connections: they can be left open and read
from (or written to) repeatedly. Previously the only
way to repeatedly read from a file was to keep track
of the number of rows read and use the skip argu-
ment to scan and allies. For writing, cat had an
append argument to write to the end of a file. This
was all tedious, and various functions (such as sink
and dump) gained append arguments as users found
a need for them. It was also expensive to keep on
closing and re-opening files, especially if they were
mounted from remote servers. There were other dan-
gers, too. Suppose we were accessing a file and some
process unlinked the file.3 Then once the file is closed
in R it will vanish. Unlinking the file could be acci-
dental, but it is also a very sensible way to provide
some protection, both against other processes inter-
fering with it and against leaving it around after we
have finished with it.

Types of connections

At present we have connections of types

file A text or binary file, for reading, writing or ap-
pending.

terminal There are three standard connections
which are always available and always open,
called stdin, stdout and stderr. These essen-
tially refer to the corresponding C file names,
so stdin is input from the console (unless in-
put has been redirected when R was launched)
whereas stdout and stderr are normally both
output to the console.

pipe Used for either reading or writing. There is
a special subclass for Windows GUI applica-
tions (not rterm) as the standard C pipes do not
work there.

text An R character vector used as a text source.

output text A means to write text output to an R
character vector, with each line forming a new
element of the vector. Lines become visible as
part of the vector in R immediately they are
complete.

We envisage adding types. My scene-setting ex-
amples illustrated the potential usefulness of sock-
ets as connections. There has been a proliferation
of ways to access URIs,4 such as read.table.url.
Many (including this one) ‘cheat’ by downloading a
file to a temporary location and then reading from
that file. For read.table5 that is not a bad solution,

3yes, that works under Unix at least.
4more commonly but less accurately known as URLs
5which currently needs to read the file twice

R News ISSN 1609-3631

Vol. 1/1, January 2001 17

but it is desirable for read.table to be able to at least
appear to read from connections that are URIs, and it
looks desirable for R to have some basic abilities to
read from http and ftp servers.

Good citizenship

A connection can exist and not be open, the life cycle
of most types of connections being

create −→ open←→ close −→ destroy

A connection is created by its constructor, for exam-
ple file or pipe, which can optionally open it. The
‘good citizen’ rule is that a function which finds a
connection open should leave it open, but one that
needs to open it should close it again. Thus the life
cycle can include multiple passes across the double-
sided arrow.

One has to be careful with the terminology here.
With one exception, a function internally never de-
stroys a connection, but the function close both
closes (if necessary) and destroys one. The excep-
tion is sink, which does close and destroy the cur-
rent sink connection, unless it is a terminal connec-
tion. There is no way for a user to explicitly close a
connection without destroying it.

Text connections are special: they are open from
creation until destruction. ‘Closing’ an output text
connection flushes out any final partial line of out-
put. (You can call isIncomplete to see if there is
one.)

These semantics may change. R version 1.2.0
also introduced references, which allow finalization
actions for referents once there is no R object refer-
ring to them, and this may be used to avoid the need
for the explicit destroying of connections.

Leaving a connection closed but not destroyed
is a minor waste of resources. (There is a finite
set of connections and each takes a little memory.)
One can find out about all the connections by show-
Connections(all = TRUE), and there is a function
closeAllConnections to close all close-able connec-
tions (that is, not the terminal connections).

What can I do with connections?

In short, almost everything you used to do with files.
The exceptions are the graphics devices which write
to files, and it is not yet clear if it is beneficial to
be able to send graphics output to connections. The
most obvious uses, to pipe the file to a printer, are
already possible via other mechanisms.

There are new things made possible by the notion
of leaving a connection open. For text-oriented ap-
plications, readLines and writeLines can read and

write limited or unlimited amounts of lines from and
to a character vector. Many connections are seekable
(check this by isSeekable) and so can be restored to
an arbitrary position.6

One can also for the first time work with binary
files in base R.7 Functions readBin and writeBin can
read and write R vector objects (excluding lists) to a
connection in binary mode. There are options to as-
sist files to be transferred from or to other programs
and platforms, for example to select the endian-ness
and the size of the storage type.

Text vs binary

There is a distinction between text mode and binary
mode connections. The intention is that text-based
functions like scan and cat should use text mode
connections, and binary mode is used with readBin
and writeBin.

This distinction is not yet consistently enforced,
and the main underlying difference is whether files
are opened in text or binary mode (where that mat-
ters). It now looks as if opening all files in binary
mode and managing the translation of line endings
internally in R will lead to fewer surprises. Al-
ready reading from a connection in text mode trans-
lates lines endings from Unix (LF), DOS/Windows
(CRLF) and Macintosh (CR) formats (and from all
connections, not just files).

Looking forwards

I see connections as playing a more central rôle in
future releases of R. They are one way to promote
distributed computing, especially where a stream-
oriented view rather than an object-based view is
most natural.

The details are likely to change as we gain expe-
rience with the ways to use connections. If you rely
on side-effects, it is well to be aware that they may
change, and the best advice is to manage the con-
nections yourself, explicitly opening and destroying
them.

Reference

Chambers, J. M. (1998) Programming with Data. A
Guide to the S Language. Springer-Verlag.

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

6at least if the underlying OS facilities work correctly, which they appear not to for Windows text files.
7Package Rstreams has provided a way to do so, and is still slightly more flexible.

R News ISSN 1609-3631

mailto:ripley@stats.ox.ac.uk

Vol. 1/1, January 2001 18

Using Databases with R
by Brian D. Ripley

There has been a lot of interest in the inter-working
of R and database management systems (DBMSs) re-
cently, and it is interesting to speculate why now.
Corporate information has been stored in mainframe
DBMSs for a few decades, and I remember colleagues
in the 1970s using SAS (via punched cards) to extract
and process information from tapes written from
such databases. I guess what has changed is acces-
sibility: personal DBMSs are widely available and no
longer need teams of experts to manage them (al-
though they still help). The R Data Import/Export
manual introduced in version 1.2.0 provides a formal
introduction to most of the facilities available, which
this article supplements by some further motivation,
as well as allowing for personal views.

We can look at the interfaces from two view-
points:

1. You have data you want to organize and extract
parts of for data analysis. You or your organi-
zation may find it convenient to organize the
data as part of a database system, for example
to help ensure data integrity, backup and au-
dit, or to allow several people simultaneously
to access the data, perhaps some adding to it
and others extracting from it.

The need can be as simple as to have a data en-
try and verification system.

2. You want to do some simple data manipula-
tions for which R is not particularly suitable.
Someone on r-help wanted to do a merge on
30,000 rows. DBMSs are (usually) very good
at merges, but R’s merge is only designed
for small-scale problems. Rather than spend
time re-writing merge, why not use an already-
optimized tool?

Choosing a DBMS

A wide range of DBMSs are available, and you may
already have one in use. If not, the most popular
contenders on Unix/Linux appear to be PostgreSQL
(http://www.postgresql.org/) and MySQL (http:
//www.mysql.com/). PostgreSQL is Open Source and
competitive on features and standards-conformance
with the commercial big names (many of which have
‘free’ lightweight Linux versions). MySQL is ‘lean
and mean’ but with limited security features, little
transaction support,

On Windows, the most popular database of any
sophistication is undoubtedly Access, which has a big
brother SQL Server. Pre-compiled development ver-
sions of MySQL can be downloaded and were used
for most of our testing under Windows. It is possi-
ble8 to build and use PostgreSQL under the Cygwin
environment.

I will assume that we are working with a relational
database. These store the data in a collection of tables
(also known as relations) which are closely analogous
to R’s data frames: they are conceptually rectangular
made up of columns (or ‘fields’) of a single9 type, for
example character, monetary, datetime, real, . . . , and
rows (‘records’) for each case.

The common DBMSs are client-server systems,
with a ‘backend’ managing the database and talk-
ing to one or more clients. The clients can be
simple command-line interfaces10 such as provided
by mysql and psql, general-purpose or application-
specific GUI clients, or R interfaces as discussed here.
The clients communicate with the backend by send-
ing requests (usually) in a dialect of a language called
SQL, and receive back status information or a repre-
sentation of a table.

Almost all of these systems can operate across
networks and indeed the Internet, although this is
often not enabled by default.

Choosing an interface

There are several ways to interface with databases.
The simplest is the analogue of ‘sneaker LAN’, to
transfer files in a suitable format, although finding
the right format may well not be simple.

Four contributed R packages providing interfaces
to databases are described in R Data Import/Export,
but two are currently rather basic. By far the most
portable option is RODBC, and unless you can
choose your DBMS you probably have no other op-
tion. Open Database Connectivity (ODBC) is a stan-
dard originally from the Windows world but also
widely available on Linux. It provides a common
client interface to almost all popular DBMSs as well
as other database-like systems, for example Excel
spreadsheets. To use ODBC you need a driver man-
ager for your OS and a driver for that and your DBMS.
Fortunately drivers are widely available, but not al-
ways conforming to recent versions11 of ODBC.

The basic tools of RODBC are to transfer a data
frame to and from a DBMS. This is simple: use com-
mands like

sqlSave(channel, USArrests, rownames = "state")

8but not easy, and I know of no pre-compiled distribution.
9with an important exception: see ‘tips’ below

10sometimes called ‘monitors’
11that for MySQL is rather out of date.

R News ISSN 1609-3631

http://www.postgresql.org/
http://www.mysql.com/
http://www.mysql.com/

Vol. 1/1, January 2001 19

sqlFetch(channel, "USArrests", rownames = TRUE)

to copy the R data frame to a table12 in the database,
or to copy the table to an R data frame. However, if
we want to do more than use the database as a se-
cure repository, we need to know more. One thing
we can do is ask the DBMS to compute a subset of a
table (possibly depending on values in other tables),
and then retrieve the result (often known as a result
set). This is done by sqlQuery, for example (all on
one line)

sqlQuery(channel,

"select state, murder from USArrests

where rape > 30 order by murder")

which is the SQL equivalent of the R selection

z <- USArrests[USArrests$Rape > 30,

"Murder", drop = FALSE]

z[order(z[,1]), drop = FALSE]

Indeed, almost anything we want to do can be done
in this way, but there are shortcuts to a lot of common
operations, including sqlFetch and sqlSave. As an-
other example, let us perform the (tiny) merge exam-
ple in a database.

sqlSave(channel, authors)

sqlSave(channel, books)

sqlQuery(channel,

"SELECT a.*, b.title, b.otherauthor

FROM authors as a, books as b

WHERE a.surname = b.name")

This is of course pointless, but the technique it illus-
trates is very powerful.

There is a package13 RPgSQL that provides a
sophisticated interface to PostgreSQL. This provides
analogues of the facilities described for RODBC. In
addition it has the powerful notion of a proxy data
frame. This is an object of an R class which inherits
from data frames, but which takes little space as it
is a reference to a table in PostgreSQL. There will be
an advantage when we are accessing smaller parts of
the data frame at any one time, when the R index-
ing operations are translated to SQL queries so that
subsetting is done in PostgreSQL rather than in R.

Traps and tips

Things are not quite as simple as the last section
might suggest. One problem is case, and one solu-
tion is only ever to use lowercase table and column
names. As the mixtures of cases in the examples thus
far suggest, many DBMSs have problems with case.
PostgreSQL maps all names to lowercase, as does
MySQL on Windows but not on Linux, Oracle maps
all to uppercase and Access leaves them unchanged!

In a similar way the R column other.author was
changed to otherauthor in the system used for the
merge example.

Another problem is row-ordering. It is safest to
regard the rows in a table as unordered, in contrast
to a data frame, and indeed the optimization process
used in executing queries is free to re-order the re-
sults. This means that we do need to carry along row
names, and this is done by mapping them (more or
less transparently) to a column in the table. It also
explains why we sorted the results in the sqlQuery
example.

Care is needed over missing values. The one ex-
ception to the rule that all entries in a column of a ta-
ble must be of a single type is that an entry is allowed
to be NULL. This value is often used to represent miss-
ing values, but care is needed especially as the mon-
itors do not visually distinguish an empty character
field from a NULL, but clients should. Michael Laps-
ley and I re-wrote RODBC to handle all the possibil-
ities we envisaged.

We have so far given no thought to efficiency,
and that is how it should be until it matters. Tuning
databases is an art: this involves judiciously creating
indices, for example. Hopefully research advances
in database systems will percolate to more intelligent
internal tuning by widely available DBMSs.

Another issue is to take care over is the size of the
result set. It is all too easy to write a query that will
create a result set that far exceeds not just the avail-
able RAM but also the available disc space. Even
sensible queries can produce result sets too large to
transfer to R in one go, and there are facilities to limit
queries and/or transfer result sets in groups.

The future

Hopefully one day in the not too far distant future
the R interfaces will be much more similar than at
present, but that does depend on contributors look-
ing at each other’s designs.

It will be good to see more use of R’s various
types and classes, for example for times and mone-
tary amounts.

There is a further fascinating possibility, to em-
bed R inside a DBMS. Duncan Temple Lang mentions
embedding R in PostgreSQL in a document14 on the
R developer’s Web site. I don’t have access to such a
system, but his description is

The initial example [. . .] was embedding
R within PostgreSQL for use as a proce-
dural language. This allows (privileged)
users to define SQL functions as R func-
tions, expressions, etc.

12probably named in lower case as here.
13which as far as I know it has only been used under Linux/Unix.
14http://developer.r-project.org/embedded.html

R News ISSN 1609-3631

http://developer.r-project.org/embedded.html

Vol. 1/1, January 2001 20

from which I gather that the (already rather ex-
tended) dialect of SQL can be extended by user-
defined functions that call R to compute new
columns from old ones.

We are exploring R–DBMS interfaces in data min-
ing applications. There databases can be large but are
perhaps growing slower than computing power. For
example, insurance databases already cover around

30 million drivers. The idea is to use the DBMS not
just to extract subsets for analysis but also perform
cross-tabulations and search for exceptions.

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

Rcgi 4: Making Web Statistics Even Easier
by M.J. Ray

Webservers allow browsers to run a selection of pro-
grams chosen by the webmaster, via the Common
Gateway Interface which defines how inputs are
passed from browser to program and output passed
back again. Naturally, it is possible to make R one of
the available programs by using a “wrapper script”
to translate between standard R input and outputs
and CGI. Rcgi is such a script and has just been re-
vised for a new, more powerful and easier-to-install
release.

Benefits

Rcgi has been developed in response to a perceived
need at the University of East Anglia. Even though
we can provide students with their own copies of the
R software for free, there are two principal reasons
why it is still useful to provide access to our installa-
tion over the internet.

The first is that not all students have their own
workstations. While this may change eventually,
many students use the campus’s open access com-
puting facilities. Our department can manage soft-
ware on only a small proportion of these machines,
so for the others a web interface is simpler to access
and insulates us from configuration changes beyond
our control. As long as the computer can still run a
web browser, they can use Rcgi.

Feedback from students on our third-year course
(who were the first to use the system) suggests
that the web front-end is popular partly because of
its “batch mode” of operation, running some com-
mands and returning the output, together with the
commands for editing and resubmission.

The second and increasingly important benefit of
Rcgi is the ability for the lecturer to provide worked
examples to the students with the option of leav-
ing spaces for the students to contribute their own
data to the examples. Rather than having to write
their own CGI programs for each example, lecturers
need only write the HTML for the page (which many
know already) and the program in the R language.

Example

Take the following snippet of R code, which defines a
vector of numbers and generates the basic summary
statistics for them:

test <- c(1,45,2,26,37,35,32,7,

4,8,42,23,32,27,29,20)

print(summary(test))

which has the output

Min. 1st Qu Median Mean 3rd Qu. Max.

1.00 7.75 26.50 23.13 32.75 45.00

For an elementary statistics course, the lecturer
may wish to provide this as a worked example, but
allow the students to change the values in the “test”
list. The HTML code to do this is:

<form method=’post’

action=’/cgi-bin/Rcgi’>

<input type=’hidden’ name=’script’

value=’test <- c(’ />

<input type=’text’ name=’script’

value=’1,45,2,26,37,35,32,7,

4,8,42,23,32,27,29,20’ />

<input type=’hidden’

name=’script’ value=’)

print(summary(test))

’ />

<input type=’submit’ value=’go!’ />

</form>

and a view of the data entry page and the results re-
turned from Rcgi are included in figure 4. Hopefully
by the time that this article appears, this example will
be back online at the Rcgi site (address below).

Note that the code executed is displayed directly
below the output, offering the student the chance to
examine and modify the R program. Hopefully, they
can learn from this experimentation in a similar way
to having the entire system on their own computer.

The most commonly suggested point for im-
provement was the installation procedure, which
was previously completely manual. The usual Unix
make program is used to install the new release,
with a script that attempts to locate the various

R News ISSN 1609-3631

mailto:ripley@stats.ox.ac.uk

Vol. 1/1, January 2001 21

Figure 4: Screenshots of the results of the example HTML

programs it requires and build a module called
‘Rcgi::SystemPrograms’ detailing the location of some
system programs required. The installer is still ad-
vised to review the scripts to make sure the details
found are correct, though.

Other forthcoming improvements include better
security checking (which is fairly basic at the mo-
ment) and better load balancing and session man-
agement. However, it is already a useful and pop-

ular system with a growing user community, with
a mailing list available for help and development.
The download site is http://stats.mth.uea.ac.
uk/Rcgi/.

M.J. Ray
University of East Anglia, Norwich, UK
mjr@stats.mth.uea.ac.uk

Omegahat Packages for R
by John M. Chambers and Duncan Temple Lang

Overview

As part of the Omegahat project (http://www.
omegahat.org/), we are developing a collection of
packages to support new directions in program-
ming in the S language, as implemented in R (http:
//www.r-project.org/) or in S-Plus (http://www.
insightful.com/products/splus/). The packages
we describe here illustrate ways to communicate be-
tween R and other languages and applications. You
may find the packages useful if you want to access
code from R that is written in another language,
or call R functions from another programming lan-

guage or application. This includes the notion of em-
bedding R in such a package, or vice versa.

We also comment on future approaches to writing
such software, with particular reference to making it
available in both R and S-Plus.

We start with a very brief description of each of
the available packages. More details can be found
at the Omegahat web site (http://www.omegahat.
org/). You can find a slightly lengthier description
of how the packages relate to each other and the cur-
rent tools in the sections below. We also plan to de-
scribe individual packages in future editions of the R
newsletter. Please note that all of these packages are
work-in-progress, at various different stages of evo-
lution. We would be very appreciative of any com-

R News ISSN 1609-3631

http://stats.mth.uea.ac.uk/Rcgi/
http://stats.mth.uea.ac.uk/Rcgi/
mailto:mjr@stats.mth.uea.ac.uk
http://www.omegahat.org/
http://www.omegahat.org/
http://www.r-project.org/
http://www.r-project.org/
http://www.insightful.com/products/splus/
http://www.insightful.com/products/splus/
http://www.omegahat.org/
http://www.omegahat.org/

Vol. 1/1, January 2001 22

ments on any of the topics.

The packages

There are currently five packages that provide dif-
ferent ways to communicate between R/S-Plus and
other languages and applications:

XML facilities for reading and writing XML docu-
ments in S, allowing easier data exchange be-
tween S and other applications;

Java an interface for calling software written in Java
from R and R functions from Java, and in-
cludes an R graphics device which uses the
Java graphics facilities and can be customized
using S functions;

RSPerl an interface for running Perl inside R, and
R inside Perl so that one can create Perl ob-
jects, and invoke their methods and Perl sub-
routines from R, and vice-versa;

Python like the Perl and Java interfaces, this allows
R functions to be called from Python scripts
and Python classes, methods and functions to
be called from R;

CORBA dynamic facilities for invoking methods in
other applications, on other machines and writ-
ten in a different language and also providing
these types of server objects in S itself. In other
words, this provides a high-level mechanism
for distributed computing in S.

Inter-system interfaces

While S is a general programming language with
which one can do almost anything, it is not always
the most appropriate tool. Most of us will have en-
countered situations in which it is better to use other
software, whether it be motivated by the need for ef-
ficiency or just accessing functionality already writ-
ten in another language. The interfaces from S to sub-
routines in C or FORTRAN and to shell commands
have been around a long time and provide the basic
mechanisms to access other software. The new in-
terfaces provide access to new languages. They also
provide better interfaces, both in terms of how they
communicate and also in the ability to embed the S
language software in other systems. Embedding is
important if we want to bring statistical software to
the users of non-statistical systems.

The inter-system interfaces provide three basic
ways to communicate between R or S-Plus and other
applications. The first is to share data in a com-
mon format. We suggest using XML, the eXtensi-
ble Markup Language to do this. The next approach
is to embed the application within R or vice-versa

allowing direct communication within a single pro-
cess housing the two systems. The Java, RSPerl and
Python packages do this for each of these different
languages. The last approach is to support inter-
process, inter-machine communication and for this
we use CORBA.

XML provides a way of specifying data so that it
is self-describing and can be read by different appli-
cations from a single source. XML provides a way
of saying what gets transferred between the applica-
tions, not how, be it files, URLs, sockets, databases,
etc. The inter-language and CORBA interfaces pro-
vide the mechanism of how data is transferred, but
focuses more on the exchange of functionality be-
tween the systems. We won’t make further mention
of the XML approach here as it is described in an-
other article in this newsletter.

Perl, Python and Java

The Perl, Python and Java interfaces allow one to cre-
ate objects, call functions and methods, and evaluate
expressions in these languages as if they were local
to R. A module or package written in any of these
languages can be installed and loaded into the ses-
sion without having to write any special code. Thus,
you can use Perl’s modules to access network ser-
vices, Web facilities, operating system functions, etc.
Similarly, one can use any of Python’s rich set of
modules and any package implemented in Java, in-
cluding building graphical interfaces, communicat-
ing with databases, etc. Additionally, from R, we can
even find out what modules, classes, routines and
methods are available to us from these different sys-
tems and how to call them.

An immediate consequence of these interfaces is
that one can replace calls to scripts in each of these
languages with a direct call to evaluate an expres-
sion in Java, Python, or Perl. In other words, rather
than calling a script written in any of these languages
via the system function, we can call the language di-
rectly within the R session and have it execute that
script. For example, we can use .PerlExpr to evalu-
ate a Perl expression or .PythonEvalFile to execute
a Python script.

Direct calls have some key advantages: we avoid
starting a new process each time; results from earlier
evaluations can be used in future evaluations; and
objects are returned rather than lines of text contain-
ing these values. In fact, we can return references to
objects, meaning that, say, the Java object can stay in
Java rather than being converted and copied to R.

Let’s consider a simple example. Using
Java/Omegahat embedded inside R, we create a new
window containing a button. We can then do some
additional computations in R and return to Java to
access the button and set the text it displays.

R News ISSN 1609-3631

Vol. 1/1, January 2001 23

.OmegahatExpression("f = new

GenericFrame(b = new JButton(’No text’))")

... # S code

.OmegahatExpression("b.setText(’Get help’)")

While using strings to send instructions to the
other language may appear convenient at first, it
is clumsy, error-prone and inefficient. Instead, it is
better to invoke routines and methods directly from
within the S language, passing the arguments as reg-
ular S objects, avoiding the awkward and limiting
pasting of the arguments together to form the expres-
sion as a string. For example, we can create a net-
work news reader, set the news group to read and
get the first article with the S commands

news <- .PerlNew("News::NNTPClient")

msgNums <- news$group("comp.lang.python")[[1]]

news$article(as.integer(msgNums[[1]]))

The R-Perl interface handles invoking the corre-
sponding methods in the NNTP object in Perl and
converting both the arguments and the results to and
from Perl.

This approach makes these foreign routines ap-
pear as if they are local S functions and leads to richer
and more flexible results. The “magic” behind the in-
terface is that we can refer to objects in these other
languages directly as if they are local to S, and the in-
terface handles the references appropriately. Clearly,
in the Java example above, there is no sensible way to
copy the button or the window/frame to an R object.
In fact, we want to leave it in Java and manipulate it
in subsequent R calls, such as

.Java(b, "setText", "Get Help")

Each of these interfaces also provides a mecha-
nism for calling S code from that other language.
This means that we can call code in that other lan-
guage and have it callback to R during the execution
of that code. Also, it means that users of those lan-
guages can access sophisticated statistical software in
a way that is familiar to them without having to learn
yet another language.

Inter-process communication: CORBA

The approach of embedding other applications and
languages within the S session does not work eas-
ily for all systems. For example, sometimes we will
want to run these other systems on a different ma-
chine. So, we need a way to access functionality in
other processes to things such as retrieving or updat-
ing the data in a spreadsheet; allowing computations
to be displayed in a GUI, etc.

The CORBA package (http://www.omegahat.
org/RSCORBA/) provides this functionality, allowing
users to call methods in remote objects as if they were
local S functions. The remote objects can potentially
be in a different application, running on a different
machine and developed in a different programming

language. Also, S users can offer facilities to other
applications by creating CORBA servers using S ob-
jects and functions. They do not need to fuss with
any of the details of using CORBA with C/C++.

In addition to being able to share functionality
from other applications, the CORBA package pro-
vides a simple, high-level way to implement efficient
and structured (i.e. fault tolerant and synchronized)
parallel/distributed computing. All one need do is
have different R processes running on different ma-
chines, each of which provides a CORBA server to
perform part of bigger task. Then one R process act-
ing as the manager calls these methods in the dif-
ferent servers as background or asynchronous tasks
which run concurrently.

In addition to these interfaces, we are also work-
ing on embedding R in the Postgres database man-
agement system, the Apache Web Server and within
Netscape.

The S language

The S language, originally developed at Bell Labs,
has become a widely used medium for doing data
analysis and for implementing the results of statis-
tics research. Its influence was recognized in the 1998
ACM Software System award.

What about the future of S? What steps can we
take that will increase its usefulness and relieve some
of the current difficulties?

Compatibility between R and S-Plus

We regard as a major goal to define and support a
growing compatibility at the level of an Application
Programmer Interface between R and S-Plus. Much
of the software described in this article can run in
both R and S-Plus. This means that users of these and
other new packages can take advantage of other fa-
cilities in both languages, or work on platforms that
are only supported by one of the implementations.

There are many ways to make new software
available in both implementations of the S language.
Other things being equal, one would like the differ-
ences in the implementation to be minimized. To do
this, one needs software and guidelines that imple-
ment a subset of the S language compatibly for both
systems. As time goes by, we want that subset to
grow.

A natural side-effect of such an approach is a pos-
sible “standard” for the S language. An agreement
among users and those responsible for S-Plus and
R on a standard application programming interface
for the S language would enhance the value of the
language. Potential users and programmers would
be encouraged that software written against such a

R News ISSN 1609-3631

http://www.omegahat.org/RSCORBA/
http://www.omegahat.org/RSCORBA/

Vol. 1/1, January 2001 24

standard would be widely usable, just as such assur-
ances are important for those programming in lan-
guages, such as C and C++, for which an agreed stan-
dard is available. Ongoing work in the Omegahat
project will, we hope, encourage discussion of such a
standard.

Summary

We have described very briefly some ongoing work,
part of the Omegahat software, that provides facil-
ities to programmers in R and S-Plus. Using these,
you can connect software in the S language in an ef-
fective way to many other computing tools. Wher-
ever possible, the resulting software should be di-

rectly usable in both R and S-Plus.
We encourage readers to get more information

from the Omegahat website (http://www.omegahat.
org/), and to try out the components that seem in-
teresting for your applications. Because Omegahat
is a joint, open-source project, we also particularly
encourage suggestions and contributions to any of
these efforts.

John M. Chambers
Bell Labs, Murray Hill, NJ, U.S.A.
jmc@research.bell-labs.com

Duncan Temple Lang
Bell Labs, Murray Hill, NJ, U.S.A.
duncan@research.bell-labs.com

Using XML for Statistics: The XML Pack-
age
by Duncan Temple Lang

XML, the eXtensible Markup Language is fast be-
coming the next big thing in computer applications
and the Web. Along with the usual hype, there
really is some substance and XML will probably
turn out to have non-trivial relevance for statistics.
In anticipation of this, we in the Omegahat project
(http://www.omegahat.org/) have added an S pack-
age (i.e., works with both R and S-Plus) to both read
and write XML. In this short article, we will out-
line some of the problems for which XML is a nat-
ural solution, and then describe what XML is, and
some other areas in which XML technology is be-
ing exploited. Then we will take a brief look at
some of the aspects of the R/S-Plus XML package.
More information on the functions can be found at
http://www.omegahat.org/RSXML/.

Using XML for datasets

Many of us are familiar with receiving the contents
or values of a dataset in one file and a description of
the dataset and its format in another file. Another
problem is when the dataset is given as a set of files
where records in one file correspond to records in the
other files. In either case, the user must figure out the
exact format and appropriate commands to group
the values so as to read the values into into the data
analysis environment. For example, the user must
know whether some of the (initial) lines are com-
ments; whether the first row of data contains variable
names or is an actual record; how are missing values
represented; whether integer values in a column rep-
resent a factor, a real valued-variable, or actually an

integer; etc. The separation of the auxiliary informa-
tion such as the ones just listed and other details such
the author, the version of the dataset, the contact ad-
dress, etc. can make it harder to process and ensure
that the data has been read correctly.

When the datasets are not simply tables of num-
bers or strings, things quickly get more complicated.
For example, if each record contains a different num-
ber of observations for a particular variable (i.e.,
ragged rows), some representation must be encoded
into the ASCII file indicating which values are as-
sociated with which variable. Similarly, if the data
frame of interest contains actual S objects that are not
merely simple scalars, but are made up of a collection
of values (e.g., the first two values of a record de-
fine a time interval object), we need to process these
in a separate step after reading all the values using
read.table.

If we could provide structure and additional in-
formation to data, we could also combine different,
related datasets. For example, we can have both data
about computers in a network and also the topology
of that network in different parts of the same file.
Also, we could add auxiliary information such as the
number of records, the number of elements in a list,
etc. This makes it easier and more efficient to read
into S.

In order to address these issues, we need to find
a way to add this type of structural information to
the values. To do this, we need to agree on a format
and then develop tools to read and write data using
this format. And we need to develop these tools for
different systems such as R, S-Plus, Matlab, SAS, etc.
Well this seems like a lot of work, so we should look
for an existing format that allows us to add our own

R News ISSN 1609-3631

http://www.omegahat.org/
http://www.omegahat.org/
mailto:jmc@research.bell-labs.com
mailto:duncan@research.bell-labs.com
http://www.omegahat.org/
http://www.omegahat.org/RSXML/

Vol. 1/1, January 2001 25

types of information and which has existing tools to
read and write data in this format. And this is exactly
what XML is good for.

What is XML?

XML stands for eXtensible Markup Language. It is a
general version of the familiar HTML. XML is “eX-
tensible” in the following way. While HTML has a
fixed set of elements such as <H1>, <H2>, <TABLE>,
<TR>, <A>, etc., XML allows one to define new tags or
elements and the allowable attributes they support.
In its simplest terms, XML is a general way of de-
scribing hierarchical data, i.e., trees. Nodes are rep-
resented as names with named attributes and sub-
nodes, i.e.

<nodeName name="value" name="value">

<subNode>...</subNode>

</nodeName>

How can we represent a dataset as a tree us-
ing XML? Simply by having the different elements
such as row and variable names, the different records
and the values within each record be introduced by
XML tags. For example, we might markup the Mo-
tor Trend Car Data (mtcars) dataset in the following
way:

<dataset numRecords="32">

<variables number="11">

<variable id="mpg">

Miles Per U.S. Gallon

</variable>

<variable id="cyl">

Number of cylinders

</variable>

..

</variables>

<records>

<record>

<real>21</real>

<int>6</int>

<na/>...

</record>

...

</records>

</dataset>

With the ability to introduce new elements such
as <dataset>, <variable>, etc., it is essential that
software can interpret this so that it can convert this
specification of a dataset to, for example, an S data
frame. For this, S must expect certain tags and at-
tributes an interpret them appropriately to create a
dataset. We define these tags and the relationships
between them in what is called a DTD—Document
Type Definition. This is like a LATEX style sheet, and
characterizes a class of documents with the same
structure. It specifies how the elements of a docu-
ment are related and what are the valid attributes for
each element.

Another difference between HTML and XML is
that HTML is concerned with how things appear on
a page or in a browser, whereas XML deals with the
structure of data and the relationships between the
different nodes. However, we often want to display
XML documents such as the dataset above and have
it be typeset in a nice way. This is where XSL, the
eXtensible Stylesheet Language, enters the picture.
XSL allows one to say specifies rules which control
how XML elements are transformed to other XML el-
ements, including HTML, and indirectly to TEX, PDF
(via FOP), etc.

This separation of structure from appearance and
the ability to easily transform XML documents to
nicely rendered HTML, TeX, PDF, etc. files is one rea-
son why XML is so useful. It allows us to put in real
information about data that can be easily accessed
from software. There are other reasons why XML
is likely to be successful. The fact that is reason-
ably simple and builds on people’s familiarity with
HTML makes it likely that people will be able to use
it. Since there is no company that controls the speci-
fication or has a singularly vested interest in control-
ling how it evolves, it has a good chance of being
accepted widely and becoming a generic standard.
Perhaps the most important reason that XML may
succeed is the existence of a vast collection of appli-
cations and libraries for most common programming
languages to parse XML, generate and edit XML,
and convert XML to other formats using XSL. The
support for different languages means that data in
XML is essentially application independent and can
be shared across different systems. Finally, XML is
not a new technology. It is a simplification of SGML
(Structured Generalized Markup Language) that has
been in existence for about 20 years. Thus, XML has
benefited from years of experience.

Other uses

We have seen how statisticians can use XML to share
datasets across different applications. We can also
use XML as an alternative format for saving R ses-
sions and S objects in general. In other words, when
S objects are written to disk, they can be stored using
an XML format. This provides a convenient mech-
anism for sharing objects between R and S-Plus via
a single copy of the object, reducing both the stor-
age space and the work to convert them. Many types
of these S language objects could also be read into
XLisp-Stat, Octave and Matlab from their XML rep-
resentation with little effort.

While we can use XML for our own purposes, it is
important to think of XML as a way to exchange data
with other disciplines too. XML is becoming very
widely used for a variety of different applications.
For example, many of the Microsoft applications use
XML as one of their storage formats. Similarly, the

R News ISSN 1609-3631

Vol. 1/1, January 2001 26

Gnumeric spreadsheet and other tools create output
using XML. Businesses are using it to store informa-
tion such as catalogs, documents, forms, etc. Many
database systems now produce XML output as the
result of queries. Also, business-to-business trans-
actions are frequently defined by XML messages.
And the Simple Object Access Protocol (SOAP, http:
//www.develop.com/soap/) is a way to use XML for
distributed computing.

In addition to these more context specific uses of
XML, there are several general purpose document
type specifications (DTDs) that will prove to be rel-
evant for statistics. These include:

MathML Mathematical formulae and expressions
can be specified using MathML. The major
browsers are adding facilities for rendering
these within HTML documents. We might use
MathML to represent formulas and mathemat-
ical functions which can be used in model fit-
ting and trellis plots; contained in documen-
tation; and passed to symbolic math environ-
ments such as Mathematica and Maple which
can read and write MathML.

SVG The Scalable Vector Graphics (http://www.
w3.org/Graphics/SVG/Overview.htm8) DTD
provides a way to use XML to specify graphics,
i.e., drawing, text and images. We might use
this for describing plots generated in S, or ren-
dering plots in S that were created in other sys-
tems. SVG supports dynamic and interactive
plots, and even animation. There are already
plug-ins for browsers that render SVG content.

GML The Geography markup language (GML) is
used for representing “geographic information,
including both the geometry and properties of
geographic features”. This includes maps, for
example.

Bioinformatics Bioinformatic Sequence Markup
Language (BSML) and a variety of other
markup languages have been proposed for dif-
ferent aspects of genetic data.

There is a staggeringly large number of other
domain-specific uses of XML listed at OASIS that
may be worth browsing to see how people are
using XML (http://www.oasis-open.org/cover/
siteIndex.html#toc-applications).

XML schema is a new topic that will be interest-
ing for us. It allows us to specify not only the struc-
ture of a document, but also give information about
the types of different XML elements (e.g., <real> is
a real number, <int> is an integer, etc.). Essentially,
it allows type specification. This would allow us to
read XML documents more efficiently and even to
automatically generate C code to read datasets into
S.

We have also started using XML for document-
ing S functions and datasets. This gives us an eas-
ier format to manipulate than the ‘.Rd’ files so that
we can add enhanced functionality to the documen-
tation system (e.g., multiple, separate examples; out-
put from commands; test code and output; etc.) in a
more structured way. And we are working on ways
to use XML for generating reports or statistical anal-
ysis output which are “live” documents containing
text, code, output and plots that can be re-run with
different datasets, etc.

The XML package

Now that we have discussed what XML is and what
it can be used for, we should describe the basics of
how to use the XML package in R. As we mentioned,
XML is basically a way of representing trees. So, the
basic functions of the XML package provide ways to
read XML documents into R as a list of lists (i.e., a
tree) and then access and manipulate the nodes in
these trees using the familiar [and [[S operators.

The primary function of the package for reading
XML documents is xmlTreeParse which returns the
tree of XMLNode objects. Because we use Dan Veil-
lard’s C-level libxml parser, the XML can be read
from a regular file, a compressed file, a URL or di-
rectly from a string. For example,

doc <-

xmlTreeParse(paste("http://www.omegahat.org/",

"RSXML/examples/prompt.xml",

sep = "")

doc <-

xmlTreeParse(system.file("data", "mtcars.xml"))

The result contains not just the tree of XMLNode ob-
jects, but also information from the document’s DTD.
We can extract the different elements of tree by tag
name or index. For example, we can get the first node

root <- xmlRoot(doc)

root[[1]]

which gives the collection of 11 <variable> nodes.
We can get the first record either as

root[[2]]

or

root[["record"]]

We will usually want to do something with the
tree and convert its contents to another form. This
can be done after the call to xmlTreeParse and the
tree has been created. Alternatively, we can provide
one or more functions to xmlTreeParse which act as
“handlers” for the different XML elements. These
can process the XMLNode object associated with
that XML element as it is encountered in the pars-
ing and the function can return any object it wants
to be put into the tree (including NULL to remove it

R News ISSN 1609-3631

http://www.develop.com/soap/
http://www.develop.com/soap/
http://www.w3.org/Graphics/SVG/Overview.htm8
http://www.w3.org/Graphics/SVG/Overview.htm8
http://www.oasis-open.org/cover/siteIndex.html#toc-applications
http://www.oasis-open.org/cover/siteIndex.html#toc-applications

Vol. 1/1, January 2001 27

from the tree). The use of handlers allows us to build
quite simple filters for extracting data. For example,
suppose we have measurements of height taken at
monthly intervals for different subjects in a study,
but that potentially different numbers of measure-
ments were taken for each subject. Part of the dataset
might look like

<record><id>193</id>

<height unit="cm">

<real>140.5</real>

<real>143.4</real>

<real>144.8</real>

</height>

</record>

<record>

<id>200</id>

<height>

<real>138.4</real>

</height>

</record>

Now, suppose we want to get the records for the
subjects which have more than one observation. We
do this by specifying a handler for the <record>
tags and counting the number of sub-nodes of the
<height> element.

xmlTreeParse("data",

handlers=list(record=function(x,...)

ifelse(xmlSize(x[["height"]]) > 1, x, NULL)))

This will discard the second record in our example
above, but keep the first. We should note we can
also use XSL to filter these documents before read-
ing the results of the filtering into S. More sophisti-
cated things can be done in S, but XSL can be simpler
at times and avoids a dependency on S. The good
thing is that we have the luxury of choosing which
approach to use.

The package also provides other facilities for
reading XML documents using what is called event
or SAX parsing which is useful for very large doc-
uments. Also, users can create XML documents or
trees within S. They can be written to a file or a string

by incrementally adding XML tags and content to
different types of “connections”.

The future

XML provides an opportunity to provide a univer-
sal, easy-to-use and standard format for exchanging
data of all types. This has been a very brief intro-
duction to some of the ways that we as statisticians
may use XML. There is little doubt that there are
many more. Also, regardless of how we can exploit
XML for our own purposes, we will undoubtedly
encounter it more as we interact with other disci-
plines and will have to deal with it in our daily work.
Therefore, we should help to define formats for rep-
resenting data types with which we work frequently
and integrate the XML tools with ours.

Resources

The surge in popularity of XML has rivalled that of
Java and hence the number of books on all aspects
of XML has increased dramatically over the past
few months. There are books on XML, XSL, XML
with Java, etc. As with any dynamic and emerging
technology, and especially one with so many sub-
domains with special interests, the Web is probably
the best place to find information. The following are
some general links that may help you find out more
about XML:

• W3’s XML page (http://www.w3.org/XML/)

• OASIS (http://www.oasis-open.org/)

• Apache’s XML page (http://xml.apache.
org/)

Duncan Temple Lang
Bell Labs, Murray Hill, NJ, U.S.A.
duncan@research.bell-labs.com

Programmer’s Niche
by Bill Venables

Welcome and invitation

Welcome to the first installment of Programmer’s
Niche.

This is intended to be the first of a regular series of
columns discussing R issues of particular interest to
programmers. The original name was to have been
Programming Pearls with the idea of specialising in

short, incisive pearls of R programming wisdom, but
we have decided to broaden it to include any mat-
ters of interest to programmers. The gems are still
included, though, so if you have any favourites, let’s
hear about them.

That brings me to the real purpose of this pream-
ble: to invite readers to contribute. I have offered to
edit this column and occasionally to present an ar-
ticle but for the column to serve its purpose prop-
erly the bulk of the contributions must come from
readers. If you have a particularly fine example of R

R News ISSN 1609-3631

http://www.w3.org/XML/
http://www.oasis-open.org/
http://xml.apache.org/
http://xml.apache.org/
mailto:duncan@research.bell-labs.com

Vol. 1/1, January 2001 28

programming and you can isolate the message suc-
cinctly, then let’s hear about it. If you have a short
expository idea for something you think is impor-
tant and not well enough understood by other R pro-
grammers, then let’s hear about that, too. On the
other hand, if you have a question about R program-
ming that has you stumped and you are just dying to
get the views of the experts—then do send it along to
r-help, there’s a sport.

Please send contributions directly to me at
Bill.Venables@cmis.csiro.au.

R profiling

One of the small miracles to come with R 1.2.0, at
least for Unix and Linux platforms, is the ability to
profile R functions. If you are a serious R program-
mer this is a tool you will come to use often and if
you don’t, you should.

The facility is expounded with an example in
“Writing R Extensions” and I will not repeat it all here.
Rather I will try to illustrate the idea with another,
smaller example that I will take a bit further down
the track.

Well, what is a profile? Any computation in R
will involve calling at least one function. Under nor-
mal circumstances that function will itself call other
functions and so on. The profile of the computation
is a split up of the total time taken into components
detailing how much time was spent inside each func-
tion called. Note that if function A calls function B
then the time spent inside A will include the time
spent inside B so under this interpretation the indi-
vidual time components will not add up to the total
time. It might be more useful to know the time spent
in A excluding time spent in functions that are called
from within A, so that the components do add to the
total. In fact the profile provides both: the first is
called the “total time” for function A and the second
the “self time”.

A convenient example is the well-known subsets
function first used in MASS to illustrate the idea of
a recursive function. This function finds all distinct
subsets of size r from a set of size n. The set is defined
by a vector, v. The results are presented as the rows
of an

(n
r

)
× r matrix. Here is a version of the func-

tion that has just a little more bulletproofing than the
original version:

subsets0 <- function(n, r, v = 1:n) {

if(r < 0 || r > n)

stop("invalid r for this n")

if(r == 0) vector(mode(v), 0) else

if(r == n) matrix(v[1:n], 1, n) else

rbind(cbind(v[1],

Recall(n-1, r-1, v[-1])),

Recall(n-1, r, v[-1]))

}

The computation seems to come from nowhere but

it is based on the simple premise that the subsets of
size r are of two distinct types, namely those which
contain v[1] and those that do not. This provides the
essential divide-and-conquer step to allow recursion
to take over and do the rest.

OK, let’s give it a reasonably hefty example to
chew up a bit of time and then use profiling to see
how it has been spent. Before we do that, though, we
need to make two small preliminary points.

Firstly note that not only is profiling at the mo-
ment restricted to Unix and Linux (because the cur-
rent code uses Unix system calls), but to have it avail-
able at all you must install R on your machine with
profiling enabled (which is the default); “Writing R
Extensions” gives the details.

Secondly profiling is done in two steps, one
within the R session and one outside. Inside R you
turn profiling on and off with calls to the Rprof in-
built function, for example:

> Rprof("Rsubs0.out")

> X <- subsets0(20, 6, letters)

> Rprof(NULL)

The two calls to Rprof start and stop a process
where the computation is inspected at regular in-
tervals (by default every 20 milliseconds) and the
names of the functions currently on the evaluation
stack are dumped onto an output file, in this exam-
ple ‘Rsubs0.out’. For long calculations this file can be-
come quite large, of course.

Outside R there is a Perl script that can be used
to summarise this information by giving the “total”
and “self” times, and percentages, for each function
called. It is called through R as shown in Figure 5.

The information is actually given twice: sorted by
total time and by self time. I have only shown the
second form here.

What really surprised me about this is the
amount of self time taken by vector, mode and the
ancillaries they use such as switch and typeof. I had
thought this would be entirely negligible.

Given that clue let’s recast the function so that the
call to vector is done once and the value held in an
enclosing environment. All the recursive hard work
will then be done by a very lean internally-defined
function, sub, that lives in the same environment. A
version is given in Figure 6.

We have in fact added a few frills (“Do you want
v to define a true set, so that repeated items are to be
removed, or are you not fussed about repeats?”) and
removed all time consuming bulletproofing from the
inner function, sub. I will not present the full profil-
ing output, but the header says it all, really:

Each sample represents 0.02 seconds.

Total run time: 25.96 seconds.

....

That’s a reduction of about 14 seconds in 40, at es-
sentially no cost. It comes from realising that what

R News ISSN 1609-3631

mailto:Bill.Venables@cmis.csiro.au

Vol. 1/1, January 2001 29

$ R CMD Rprof Rsubs0.out

Each sample represents 0.02 seconds.
Total run time: 39.48 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alone.
....

% self % total
self seconds total seconds name
17.73 7.00 99.39 39.24 "cbind"
11.65 4.60 100.00 39.48 "rbind"
9.68 3.82 99.75 39.38 "Recall"
9.47 3.74 100.00 39.48 "subsets0"
6.64 2.62 6.64 2.62 "-"
6.03 2.38 9.17 3.62 "matrix"
5.02 1.98 17.43 6.88 "mode"
4.81 1.90 7.50 2.96 "switch"
4.51 1.78 21.94 8.66 "vector"
3.85 1.52 4.51 1.78 "is.expression"
3.70 1.46 14.13 5.58 "|"
3.14 1.24 3.14 1.24 "=="
2.74 1.08 3.14 1.24 "as.vector"
2.74 1.08 6.69 2.64 ">"
2.68 1.06 2.68 1.06 "typeof"
2.48 0.98 3.75 1.48 "<"
2.43 0.96 2.43 0.96 "!="
0.30 0.12 0.30 0.12 ":"
0.20 0.08 0.20 0.08 "is.call"
0.20 0.08 0.20 0.08 "is.name"

Figure 5: Output of R CMD RProf

subsets1 <- function(n, r, v = 1:n, set = TRUE) {
if(r < 0 || r > n) stop("invalid r for this n")
if(set) {
v <- unique(sort(v))
if (length(v) < n) stop("too few different elements")

}
v0 <- vector(mode(v), 0)
sub <- function(n, r, v) { ## Inner workhorse
if(r == 0) v0 else
if(r == n) matrix(v, 1, n) else
rbind(cbind(v[1], Recall(n-1, r-1, v[-1])),

Recall(n-1, r, v[-1]))
}
sub(n, r, v[1:n])

}

Figure 6: Definition of function subsets1

R News ISSN 1609-3631

Vol. 1/1, January 2001 30

seemed to be a computation done only rarely is in
fact done very frequently and chomps away at the
time.

That clue clearly indicates that if we can stop the
recursion at an even earlier stage before it gets to the
null sets it may pay off even more handsomely. The
sets of size 1 are trivial to enumerate so let’s take ad-
vantage of that with one extra line:
...

if(r == 0) v0 else

if(r == 1) matrix(v, n, 1) else

the extra line

if(r == n) matrix(v, 1, n) else

...

Now according to profiling on my machine the time

for the same computation drops to just 12.32 seconds,
less than one-third the original.

The story does not end there, of course. It seemed
to me you could really make this computation zing
(at the expense of memory, but hey, this is the 21st
century) if you found a way to cache and re-use par-
tial results as you went along. I did find a way to do
this in S but using frame 0 or frame 1. Then Doug
Bates neatly ported it to R making very astute use of
the R scoping rules, function closures and environ-
ments, but that is another story for another time.

Bill Venables
CSIRO Marine Labs, Cleveland, Qld, Australia
Bill.Venables@cmis.csiro.au

Writing Articles for R News
or how (not) to ask for Christmas presents.

by Friedrich Leisch

Preface

When I wrote the call for articles for this first edi-
tion of R News on the evening of December 20, 2000
on my home laptop I shortly thought about which
formats to accept. The decision that the newslet-
ter itself would be produced in LATEX had long been
made, in fact we almost never use something differ-
ent for text processing. I do a lot of interdisciplinary
research with people from the management sciences
where MS Word is the predominant text processor
and hence am often confronted with conversion be-
tween ‘.doc’ and ‘.tex’ files when writing joint papers.

If the text uses only trivial markup (section head-
ers, . . .), then conversion is not too hard, but ev-
erybody can easily learn the little LATEX that is in-
volved in that, see the examples below. However,
once mathematical equations or figures are involved,
I know of no conversion that does not need consid-
erable manual fixing to get a decent result (and we
have tried a lot of routes). I considered including
some words on Word, but then I thought: “Well, the
email goes to r-devel, people that may be used to
writing ‘.Rd’ files—the format of R help files which is
not unlike LATEX—probably everybody knows LATEX
anyway, let’s simply see if anybody really wants to
write in Word.”, sent the email and went to bed. Bad
mistake. . .

The next day I had meetings in the morning and
my first chance to read email was in the afternoon.
To keep it short: I had started one of the perhaps
most emotional (and longest) threads on r-devel so
far, and as there is no such thing as a universal best

word processing paradigm, there was of course also
no “winner” in the discussion. So all I could add to
the pro-LATEX arguments 18 hours after my first email
is that this editorial decision had already been made.
I want to use this article to apologize to all for not be-
ing more detailed in my email that started the thread
and explain the decision.

As all of R, R News is a volunteer project. We
have no staff to do the editing or layouting etc., hence
the editors have to “outsource” as much as possible
to you, the prospective authors. This will only work
if all use the same format, because—as explained
above—automatic conversion simply does not work
in practice. I know that the majority of R developers
use LATEX, hence the decision was not too hard which
paradigm to choose.

The structure of R News articles

Figure 7 shows parts of the source code for this ar-
ticle. LaTeX is a markup language like, e.g., HTML
and mixes layout commands and contents in a sin-
gle text file (which you can write in any editor you
like, or even Word). Most commands start with
a backslash, arguments to the commands are usu-
ally given in curly brackets. We first specify the
title, subtitle and author of the article and then
issue the command \maketitle to actually type-
set it, update the table of contents and PDF book-
marks. The command \section*{} starts a new sec-
tion (\section*{} starts sections without numbering
them, \section{} without the star would add num-
bers), and then we can simply enter the main text,
separating paragraphs by blank lines.

The command \file{} has been defined by us
to typeset file names in a different font and enclose
them in single quotes. Finally we specify the au-

R News ISSN 1609-3631

mailto:Bill.Venables@cmis.csiro.au

Vol. 1/1, January 2001 31

\title{Submitting to R News}
\subtitle{or how (not) to ask for Christmas presents.}
\author{by Friedrich Leisch}

\maketitle

\section*{Preface}

When I wrote the call for articles for this first edition of R News
on the evening of December 20, 2000 on my home laptop I shortly
thought about which formats to accept. The decision that the
newsletter itself would be produced in \LaTeX{} had long been made, in
fact we almost never use something different for text processing. I do
a lot of interdisciplinary research with people from the management
sciences where MS Word is the predominant text processor and hence am
often confronted with conversion between \file{.doc} and \file{.tex}
files when writing joint papers.

If the text uses ...

\address{Friedrich Leisch\\
Technische Universität Wien, Austria\\

\email{Friedrich.Leisch@ci.tuwien.ac.at}}

Figure 7: The LATEX source code of this article

thor’s affiliation using our commands \address{}
and \email{}. The double backslash in the code
breaks lines (by default LATEX treats single newlines
just as whitespace). That’s it, no magic involved at
all.

The document style file for R News is still under
constant changes while we are busy layouting this
first issue, we will publish it on R’s homepage as
soon as we think that the interface is stable enough.
There will also be a more in-depth guide for using it,
that is beyond the scope of this article.

Graphics

In principle, graphics are much easier to convert be-
tween different formats than complete documents,
and there are a number of good (and free) conver-
sion tools available. One notable exception is WMF,
the Windows Meta Format, which is hard to deal with
on Unix-type platforms like our Linux machines.

Most graphics in this newsletter will probably be

produced using R itself. In this case, we strongly pre-
fer EPS (Encapsulated Postscript) format, which can
easily be produced using R’s dev.copy2eps() func-
tion on all platforms.

Summary

People being literate in LATEX can write articles very
much like it were a stand-alone document. For the
moment, simply use the ‘twocolumn’ option for lay-
outing. The ‘Rnews.sty’ file will be made available as
soon as possible. For others we will publish exam-
ple articles on the web, and as long as you do not
need special layouting it should be an easy go. Of
course, typesetting mathematical equations in LATEX
(where its real strength is) is something completely
different . . .

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

R News ISSN 1609-3631

mailto:Friedrich.Leisch@ci.tuwien.ac.at

Vol. 1/1, January 2001 32

Upcoming Events
by Kurt Hornik

DSC 2001

The second international workshop on ‘Distributed
Statistical Computing’ (DSC 2001) will take place at
the Technische Universität Wien in Vienna, Austria
from 2001-03-15 to 2001-03-17. This workshop will
deal with future directions in statistical computing,
such as event-driven software, graphical user inter-
faces, large and varied databases, reusable compo-
nents, high-level object-oriented interfaces, and data
exchange using XML.

Particular emphasis will be given to the R and
Omegahat (http://www.omegahat.org/) projects.

DSC 2001 builds on the spirit and success of DSC
1999, which was seminal to the further development
of R and Omegahat.

This should be an exciting meeting for everyone
interested in statistical computing with R.

There will be a two-day extension focusing on the
future of the R project. Most members of the R Core
Development Team will participate in this extension,
which is open to everyone else interested.

The conference home page at http://www.ci.
tuwien.ac.at/Conferences/DSC-2001/ gives more
information.

Kurt Hornik
Technische Universität Wien, Austria
Kurt.Hornik@ci.tuwien.ac.at

Editors:
Kurt Hornik & Friedrich Leisch
Institut für Statistik, Wahrscheinlichkeitstheorie und
Versicherungsmathematik
Technische Universität Wien
Wiedner Hauptstraße 8-10/1071
A-1040 Wien, Austria

Editor Programmer’s Niche:
Bill Venables

Editorial Board:
Douglas Bates, John Chambers, Peter Dalgaard,
Robert Gentleman, Ross Ihaka, Thomas Lumley,
Martin Maechler, Guido Masarotto, Paul Murrell,
Brian Ripley, Duncan Temple Lang and Luke Tierney.

R News is a publication of the R project for statistical
computing. All communications regarding this pub-
lication should be addressed to the editors. Please
send submissions to the programmer’s niche column
to Bill Venables, all other submissions to Kurt Hornik
or Friedrich Leisch (more detailed submission in-
structions can be found on the R homepage).

R Project Homepage:
http://www.r-project.org/

Email of editors and editorial board:
firstname.lastname @r-project.org

This newsletter is available online at
http://cran.r-project.org/doc/Rnews/

R News ISSN 1609-3631

http://www.omegahat.org/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/
mailto:Kurt.Hornik@ci.tuwien.ac.at
http://www.r-project.org/
http://cran.r-project.org/doc/Rnews/

	Editorial
	What is R?
	R Resources
	Changes in R
	Changes on CRAN
	Under New Memory Management
	On Exact Rank Tests in R
	Porting R to the Macintosh
	The density of the non-central chi-squared distribution for large values of the noncentrality parameter
	Connections
	Using Databases with R
	Rcgi 4: Making Web Statistics Even Easier
	Omegahat Packages for R
	Using XML for Statistics: The XML Package
	Programmer's Niche
	Writing Articles for R News
	Upcoming Events

